Задача: Найти площадь ромба, сторона которого равна 39 см, а разница диагоналей — 42 см.
Точка пересечения диагоналей ромба ABCD делит их на равные отрезки: AI = CI, BI = DI. Диагонали ромба перпендикулярны.
Диагонали делят ромб на 4 равных прямоугольных треугольника с гипотенузой, равной стороне ромба.
Чтобы найти площадь ромба ABCD, достаточно найти площадь одного из образованных треугольников, умножив на 4.
Р-м Δ BCI:
Обозначим стороны треугольника: IB = x (см), CI = x+21 (см), ВС = 39 (см). Применив т. Пифагора, составим и решим уравнение:
0 ≥ x₂ — отбрасываем
IB = x = 15 (см)
CI = x+21 = 15+21 = 36 (см)
Найдем площадь Δ BCI:
Найдем площадь ромба ABCD:
ответ: Площадь ромба равна 1080 см².
Объяснение:
1. если в 4-угольник можно вписать окружность, следовательно,
суммы длин противоположных сторон равны)))
т.е. сумма боковых сторон = сумме оснований = 24см/2 = 12
средняя линия трапеции = полусумме длин оснований = 12/2 = 6 (также является диаметром впис окруж)
2.считаем, что вы умеете строить параллельные прямые, перпендикуляры, откладывать отрезки - элементарные построения.
Также считаем, что Вы умеете строить касательные к окружности - задача не такая сложная, но также и касательную (разную) к двум окружностям - это задача сложнее намного, но нужно уметь.
Если вы это умеете - смотрим решение в файле. Если нет - то и решение вам не нужно.
Поделитесь своими знаниями, ответьте на вопрос: