YaroslavSerganYS5
?>

Найдите площадь и периметр ромба , если его диагонали равны 8 и 10 см

Геометрия

Ответы

siyaniemoskva

Внизу

Объяснение:

Подобны, Если пирамида пересечена плоскостью, параллельной основанию, то:

1) боковые ребра и высота разделены на пропорциональные части;

2) многоугольник сечения подобен основанию;

3) площади основания и сечения относятся, как квадраты их расстояний от вершины.

Доказательство:

1) Так как \beta\||\alpha и они пересечены плоскостью грани ASB по прямым A_{1}B_{1} и AB , то A_{1}B_{1}||AB. Аналогично получим, что B_{1}C_{1}||BC, C_{1}D_{1}||CD и т. д. и B_{1}H_{1}||BH. На сторонах углов ASB, BSC, CSD, ... , BSH получим пропорциональные отрезки:

\frac{SA_{1}}{A_{1}A} = \frac{SB_{1}}{B_{1}B}; \frac{SB_{1}}{B_{1}B} = \frac{SC_{1}}{C_{1}C}; \frac{SC_{1}}{C_{1}C} = \frac{SD_{1}}{D_{1}D}; \ldots  ; \frac{SB_{1}}{B_{1}B} = \frac{SH_{1}}{H_{1}H}.

Отсюда:

\frac{SA_{1}}{A_{1}A} = \frac{SB_{1}}{B_{1}B} = \frac{SC_{1}}{C_{1}C} = \frac{SD_{1}}{D_{1}D} =\ldots= \frac{SH_{1}}{H_{1}H}.

2) \triangle{A_{1}SB_{1}}\sim\triangle{ASB}; \triangle{B_{1}SC_{1}}\sim\triangle{BSC}; \triangle{C_{1}SD_{1}}\sim\triangle{CSD}

и т.д. Значит

\frac{A_{1}B_{1}}{AB} = \frac{SA_{1}}{SA}; \frac{B_{1}C_{1}}{BC} = \frac{SB_{1}}{SB}; \frac{C_{1}D_{1}}{CD} = \frac{SC_{1}}{SC} и т.д.

Но правые отношения в этих пропорциях равны между собой на основании только что доказанной первой теоремы, поэтому равны между собой и левые отношения:

\frac{A_{1}B_{1}}{AB} = \frac{B_{1}C_{1}}{BC} = \frac{C_{1}D_{1}}{CD} и т.д.

Т. е. стороны многоугольников A_{1}B_{1}C_{1}D_{1}E_{1} и ABCDE пропорциональны. Соответствующие углы этих многоугольников равны. Следовательно, A_{1}B_{1}C_{1}D_{1}E_{1} \sim ABCDE.

3) Пусть Q и Q' — площади основания и сечения. Имеем:

\frac{Q}{Q'} = \frac{A_{1}B_{1}^2}{AB^2};

Но \frac{A_{1}B_{1}}{AB} = \frac{SA_{1}}{SA} = \frac{SH_{1}}{SH} (по теореме 1), поэтому

\frac{Q}{Q'} = \frac{SH_{1}^2}{SH^2}.

skyey

Параллельным переносом, или, короче, переносом фигуры, называется такое ее отображение, при котором все ее точки смещаются в одном и том же направлении на равные расстояния, т.е. при переносе каждым двум точкам X и Y фигуры сопоставляются такие точки X' и Y',

Основное свойство переноса:

Параллельный перенос сохраняет расстояния и направления, т.е. X'Y' = XY

Отсюда выходит, что параллельный перенос есть движение, сохраняющее направление и наоборот, движение, сохраняющее направление, есть параллельный перенос

Из этих утверждений также вытекает, что композиция параллельных переносов есть параллельный перенос

Параллельный перенос фигуры задается указанием одной пары соответствующих точек. Например, если указано, в какую точку A' переходит данная точка A, то этот перенос задан вектором AA', и это означает, что все точки смещаются на один и тот же вектор, т.е. XX' = AA' для всех точек Х

Центральная симметрия определяется одинаково и на плоскости, и в пространстве.

Точки A и A' называются симметричными относительно точки О, если точки A, A', O лежат на одной прямой и OX = OX'. Точка О считается симметричной сама себе (относительно О)

Две фигуры называются симметричными относительно точки О, если для каждой точки одной фигуры есть симметричная ей относительно точки О точка в другой фигуре и обратно

Как частный случай, фигура может быть симметрична сама себе относительно некоей точки О. Тогда эта точка О называется центром симметрии фигуры, а фигура центрально-симметричной

Центральной симметрией фигуры относительно О называется такое отображение этой фигуры, которое сопоставляет каждой ее точке точку, симметричную относительно О

Объяснение:

Наверно это хватит

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите площадь и периметр ромба , если его диагонали равны 8 и 10 см
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Sergei Gaishun
Олеся
мария Кузив1393
Евгеньевич-Куликов1614
nsmmkrtchyan
azelenkov
saveskul84
akbmaslafarkop3175
Vladimirovna1997
lescha-77766
Андрей Шитенкова
НиколаевнаОльга
mayorovmisc6
rnimsk149
ibzaira