Отношение высот параллелограмма равно 3:4, а сумма этих высот - 63. Найди площадь параллелограмма, если его периметр равен 42.
Объяснение:
1) Пусть одна часть высоты х ед, тогда большая высота 4х ед , меньшая высота 3х ед. Сумма длин высот 63=4х+3х ⇒х=9.
Тогда большая высота 4*9=36 (ед) , меньшая 27 ед.
2) Р(параллелограмма)= 42 ед, полупериметр 21 ед.
Найдем стороны параллелограмма.
Пусть меньшая сторона у ед, тогда большая (21-у) ед.
Значение площади не изменится если искать площадь по разным основаниям S=a*h :
S=y*36 или S=(21-y)*27 ⇒ 36y= (21-y)*27 , 63y=21*27 ,y=9.
S=9*36=324(ед²).
svetrusval
31.07.2020
Рассмотрим каждое утверждение по отдельности: 1) если три стороны одного треугольника пропорциональны трём сторонам другого треугольника, то треугольники подобны.верноданное утверждение третий признак подобия треугольников. 2) сумма смежных углов равна 180°верноэто утверждение теорема о смежных углах. 3) любая высота равнобедренного треугольника является его биссектрисой. неверноа)только высота, проведенная к основанию р/б, будет являться биссектрисой. б) если р/б треугольник окажется равносторонним, то все высоты будут биссектрисами (равносторонний треугольник частный случай р/б)
Отношение высот параллелограмма равно 3:4, а сумма этих высот - 63. Найди площадь параллелограмма, если его периметр равен 42.
Объяснение:
1) Пусть одна часть высоты х ед, тогда большая высота 4х ед , меньшая высота 3х ед. Сумма длин высот 63=4х+3х ⇒х=9.
Тогда большая высота 4*9=36 (ед) , меньшая 27 ед.
2) Р(параллелограмма)= 42 ед, полупериметр 21 ед.
Найдем стороны параллелограмма.
Пусть меньшая сторона у ед, тогда большая (21-у) ед.
Значение площади не изменится если искать площадь по разным основаниям S=a*h :
S=y*36 или S=(21-y)*27 ⇒ 36y= (21-y)*27 , 63y=21*27 ,y=9.
S=9*36=324(ед²).