1) да
2) Равнобедренный треугольник — это треугольник, в котором две стороны равны между собой по длине. Равные стороны называются боковыми, а последняя — основанием. По определению, правильный треугольник также является равнобедренным, но обратное утверждение неверно.
3) Замечание. У прямоугольного треугольника один угол прямой, поэтому для подобия двух прямоугольных треугольников достаточно, чтобы у них было по равному острому углу. Признак 2. (По двум катетам). Если катеты одного прямоугольного треугольника пропорциональны катетам второго прямоугольного треугольника, то такие треугольники подобны.
Поделитесь своими знаниями, ответьте на вопрос:
Вычислить площадь фигуры ограниченной линиями y=x+1 y=0 y=3
Это верно для произвольного 4 угольника (трапеция частный случай):
Проведем диагональ x.
Запишем неравенство треугольника abx: a+b>x ;
Запишем неравенство треугольника cdx : c+x>d ;
Сложим эти неравенства почленно: a+b+c+x>x+d .
Откуда: a+b+c>d .
Таким образом , любая сторона четырехугольника меньше суммы трех других его сторон , что ,соответственно, справедливо и для трапеции.
Ну наверное самые любознательные спросят :,,А верно ли это для произвольного многоугольника?'' Таки да это так :) . Но вот как это доказать? Пусть эта задача останется вам.Дам небольшую подсказку : примените похожий метод как для 4 угольника ,используя метод математической индукции.