Только если можно с рисунком! в треугольнике авс угол авс= 50 градусов.точки f и о- внутренние точки отрезков ав и вс соответственно , bf =fo. вычислите градусную меру угла аfо.
Если Вы хотите, чтобы я обращал внимание на Ваши задачи, старайтесь не допускать грамматических ошибок. Слово пишется через О. Решть - это не так страшно, тут я допускаю, что Вы торопились и пропустили букву И.
Пусть середина AD - точка О, а прямая OM пересекает AB в точке N. Треугольник MAN - равнобедренный так как биссектриса и высота углв A совпали. Поэтому AO является еще и медианой, то есть MO=ON. Значит, диагонали 4-угольника ANDM в точке пересечения делятся пополам ⇒это параллелограмм⇒AN║MD, что и требовалось доказать. Как бонус мы получаем, что ANDM - ромб, так как AN=AM
Taurus59707
24.04.2020
Прежде всего разберемся с обозначениями. Пусть катет AB=x см, тогда, исходя из данного соотношения AB/AC=3/7, AC=(7*AB)/3=(7*x)/3 см. Теперь запишем теорему Пифагора: AB²+AC²=BC², BC=√(x²+(49*x²)/9)=√((58*x²)/9) =√(58)* x / 3 см (x и 3 уже не под корнем, мы извлекли корень из x² и 9). Теперь воспользуемся следующей формулой для нахождения высоты AH=(AB*AC)/BC. AH=42, а катеты и гипотенузы мы выразили через x. Получаем: (7*x²/3)/(√(58)*x/3)=42 (заменим деление умножением, перевернув вторую дробь)→(7*x²/3)*(3/(√58)*x)=42 (3 сокращаются, x тоже)→(7*x)/(√58)=42→x=AB=6*(√58) см, отсюда AC=14*(√58) см. Запишем теорему Пифагора для треугольника AHB: AH²+HB²=AB²→42²+HB²=36*58→1764+HB²=2088→HB²=324→HB=18 см. Запишем теорему Пифагора для треугольника AHC: AH²+HC²=AC²→42²+HC²=196*58→1764+HC²=11368→HC²=9604→HC=98 см. ответ: гипотенуза делится на отрезки 18 см и 98 см.
следовательно <FOB =<FBO =50° .
<AFO=<FOB +<FBO=50°+50° =100° (свойство внешнего угла ).
или иначе
<BFO + <FOB +<FBO =180° (cумма внутр углов Δ)
<BFO =180° -(<FOB +<FBO) =180° -(50°+50°) =80° ;
<AFO +<BFO =180° (смежные углы).
<AFO =180° -80° =100°.