Для того , чтобы вокруг выпуклого четырехугольника можно было описать окружность , должно выполняться следующее равенство: а) угл а+угл в=угл d+ угл с б)ав+сd= вс+ ad в)угл а+угл с=угл d+ угл в г)ad* bc=ab*cd
Я думаю, что в) сумма противолежащих углов должна равняться 180 градусам
titancore
18.07.2021
1) Основание прямой призмы – прямоугольный треугольник с гипотенузой 15см и катетом 12см. Найдите площадь боковой поверхности, если грань содержащая больший катет – квадрат. Решение. По Пифагору найдем второй катет основания призмы: √(15²-12²)=√(27*3)=9см. Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано). Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы. Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ. Решение. Условие для однозначного решения не полное. Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2". Проходящее - содержащее это ребро или пересекающее его? Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины? Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN). Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ. Вывод: однозначного решения по задаче с таким условием нет.
Ka-tja78
18.07.2021
Если из центра окружности, вокруг которой описан правильный шестиугольник, провести две прямые до пересечения с началом и концом одной из сторон шести угольника, мы получим равносторонний (угол между радиусами равен 360 градусов :6 = 60 градусов) треугольник, высота которого равна радиусу окружности. Как известно, высота, опущенная на сторону равностороннего треугольника, делит ее пополам. Тогда, сторона шести угольника, она же сторона равностороннего треугольника, она же гипотенуза прямоугольного треугольника, один катет которого - радиус окружности, а другой - половина половина гипотенузы, можно вычислить по формуле: а² =r² +(a/2)²; a= 2r/√ 3; Подставляем значение r=5√ 3; a=10.
сумма противолежащих углов должна равняться 180 градусам