Для начала найдем неизвестные угол и стороны ∆ АКЕ. Сумма углов треугольника 180° => угол КАЕ=180°-(54°+60°=66°
По т.синусов АЕ=АК•sin54°/sin60°. KE=AK•sin66°/sin60°
sin60°=0.8660; sin54°= 0.8090; sin66°=0.9135
AE=20•0,8090/0,8660=18,683≈18,7 см; KE=20•0,9135/0,8660=21,097≈ 21,1 см
Стороны и углы треугольника ВСD имеют те же значения, что и соответствующие углы и стороны ∆ АКЕ, но в условии не указано, какие именно элементы двух треугольников равны. Если в ∆ ВСD сторона ВС=АК, и ∠D=∠Е, то ∠В=∠А=66°,∠С=∠К=54°, ВС=20 см, ВD=AE≈18,7= см, CD=KE≈21,1 см
#1)объем конуса вычисляется по формуле:
V = 1/3 * π* R^2* H
где π=3,14
радиус известен
Найдем высоту, или катет прямоугольного треугольника
образующая - это гипотенуза
радиус будет одним из известных катетов
a= √ (c^2 - b^2)
a= √(25^2 - 7^2)=√ 625 - 49 = √576= 24
V= 1/3 * 3.14 * 49 * 24 = 1231 см^3
#2)Дано:
Осевое сечение цилиндра есть квадрат, площадь которого равняется 36 см. Найти объём цилиндра.
Объём прямого кругового цилиндра равен:
V = π * r^2 * h
(где r — радиус основания, h — высота, π ~ 3.14).
Примем диаметр цилиндра за В. Из рисунка и условий задачи ясно, что В = а.
Из рисунка и условий задачи следует, что высота цилиндра h = a
Из условий задачи – осевое сечение цилиндра есть квадрат, площадь которого равняется 36 см.
Отсюда, сторона квадрата равна квадратному корню из 36 (так как площадь квадрата равна квадрату его стороны) – отсюда, сторона квадрата равна 6 см.
Следовательно, диаметр цилиндра В = а = 6 см, его радиус r = а / 2 = 6 / 2 = 3 см
Высота цилиндра h = а = 6 см.
Отсюда, по формуле объёма цилиндра:
V = 3,14 * 3^2 * 6 = 3,14 * 9 * 6 = 169,56
Объём цилиндра равен 169,56 куб. см,
Поделитесь своими знаниями, ответьте на вопрос:
Длина хорды окружности равна 64 , а расстояние от центра окружности до этой хорды равна 60 найдете деаметр окружности
64 \ 2 = 32 один катет и 60 - другой катет.Находим гипотенузу -
32² + 60² = √1024 +3600 =√4624 = 68 гипотенуза треугольника и радиус окружности.
68 * 2 = 136 -диаметр окружности