дано: авсд-трапеция (ад-ниж. осн-е), ав=сд, ас пер-на сд, ад=16v3,угол а=60 гр.
найти: sавсд
решение:
1) рассмотрим тр-к сад: угол сад=30 гр, значит, сд=ад/2,сд=8v3.
2) проведём высоты трапеции вв1 и сс1.рассмотрим тр-к сс1д: угол д=углу а (т. к. трапеция равнобедр.); угол дсс1=30 гр, с1д=сд/2,с1д=4v3.по т. пифагора h=сс1=12.
3)ав1=с1д (равнобедр. трапеция). вс=в1с1=ад-ав1-с1д; вс=8v3.
4)sabcd=(bc+ad)*h/2; sabcd=(8v3+16v3)*12/2=144v3.
otvet: 144v3.
Задача 1.
Дано: AB = CB; ∠A = ∠C
(a) Доказать: ▲ABM = ▲CBM
(б) Доказать:
(a) Доказательство: 1) AB = CB(по условию); (2) ∠A = ∠C(по условию); (3) AM = CM(по условию); ⇒ ▲ABM = ▲CBM(по СУС);
(б) Доказательство: ▲ABM = ▲CBM(по СУС); ⇒ ∠ABM = ∠CMB
(как соответсвенные);
Задача 2.
Дано: AB = DE; ∠1 = ∠2
Доказать: BC = DC
Доказательство: (1) AB = ED(по условию); (2) AC = EC(по условию); (3) ∠BAC = ∠DEC(как смежные с равными); ⇒ ▲ABC = ▲EDC(по СУС); ⇒ BC = DC(как соответственные);
P.S.
Обязательно взгляните на прикреплённое фото.
Поделитесь своими знаниями, ответьте на вопрос:
Найдите большой угол равноб трапеции авсд , если диагональ ас образует с основанием ад и боковой стороной ав углы, равные 33 и 13 соответственно.ответ дайте в градусах.