Основание ABC, AB=4, ∠C=30°
H - центр описанной окружности.
AB/sinC =2AH (т синусов) => AH=4
Если боковые ребра пирамиды равны, то вершина падает в центр описанной окружности основания.
SH⊥(ABC)
SH=√(SA^2-AH^2) =3 (т Пифагора)
О - центр описанной сферы.
OABC - пирамида с равными боковыми ребрами, следовательно ее вершина также падает в центр H.
OH⊥(ABC)
S-H-O на одной прямой.
В плоскости ASO.
OS=OA, О на серединном перпендикуляре к SA.
M - середина SA, SM=5/2
△SOM~△SAH
SO/SA=SM/SH => SO/5=5/2*3 => SO=25/6
OH =SO-SH =25/6 -3 =7/6
Дано: ABCD - трапеция
AM = MB
CP = PD
BC // MP // AD
MP = 3
BC = 5
Найти: AD
MP - средняя линия трапеции ABCD ( по определению средней линии: отрезок, соединяющий середины боковых сторон трапеции, называется средней линией этой трапеции )
Длинна средней линии находится по формуле ⇒
ответ: AD = 1
P.s - мне кажется, правильнее было бы верхнее основанее назвать AD, а нижнее BC ( так как верхнее основанее не может быть больше средней линии, а нижнее не может быть меньше)
⇒ фото чтобы вы поняли, что я имею ввиду
Поделитесь своими знаниями, ответьте на вопрос:
Bde - прямоугольный треугольник. угол d=90, угол b= 60, bk=3 см, dk-высота. найдите длину отрезка ke
1)Рассмотрим треугольник BDE :
1.угол B - 60 градусов
2.угол D -90 градусов
3.угол E -30 градусов (т.к. сумма углов треугольника 180 градусов.180 -(90+60)=30)
2)Рассмотрим треугольник DEK:
1.Сумма углов треугольника равна 180 градусов
угол E -30 градусов
угол DKE-90 градусов (так как DK -высота )
угол KDE-180 градусов -(30+90)=60 градусов
2)Рассмотрим треугольник BDK:
1. угол B -60 градусов
угол BKD -90 градусов (высота DK)
угол BDK -30 градусов (угол D -90 .90 -60=30)
3)треугольники равны по стороне и двум углам
DEK=DBK
Значит Bk =KE=3