Любые две из трех прямых, соединяющих середины отрезков AB и CD; AC и BD; AD и BC могут быть:
а) параллельны одной из этих прямых.
Через две параллельные прямые можно провести плоскость, притом только одну.
б) пересекаться:
Через две пересекающиеся прямые можно провести плоскость, притом только одну.
В рисунке приложения даны некоторые из получающихся пар параллельных и пересекающихся прямых:
а) pd и mn как средние линии треугольников АСD и BCD параллельны AD; kp и no параллельны основанию АС треугольников АDC и АВС.
б) km и mn, mn и no пересекаются.
Объяснение: №1. а₃=6√3, ⇒ r = а₃/2√√3 = 6√3 /2√√3= 3, a₆=r=3, ⇒ P₆=3·6=16, S₃ = a₃²√3/4 = 108√√3/4 = 28√3 №2. a₄ = 5√3, но а₄ =R√2, ⇒ R= 5√3/√2 = 5√6/4; ⇒А₄=2Rtg45°=2R = 5√6/2; ⇒ p₄= 4·5√3= 20√√3, P₄= 4·5√6/2 = 10√6; s₄= (5√3)²= 75, S₄= (5√6/2)²=37,5 №3. a₃= 3√5, ⇒ R = a₃/√3= 3√5/√3 = √15; a₆= 2Rtg(180°/6) = 2√15· √3/3= 2√√5; P₆= 6·2√5 =12√5; S₃= а₃²√3/4 = (3√5)²·√3/4 = 45√3/4
Поделитесь своими знаниями, ответьте на вопрос:
Ac - касательная, ав - хорда окружности с центром в точке о, угол аоb равен 70 градусам. чему равен угол bac
ΔOAB - равнобедренный (OA=OB как радиусы окружности), поэтому ∠OAB=∠OBA=(180°-70°):2=55°.
Радиус проведённый к точке касания, перпендикулярен касательной, поэтому ∠OAC=90°.
Если ∠BAC - тупой:
∠BAC = ∠BAC₁ = ∠OAC₁+∠OAB = 90°+55° = 145°
Если ∠BAC - острый:
∠BAC = ∠BAC₂ = ∠OAC₂-∠OAB = 90°-55° = 35°
ответ: 35° или 145°.