1. Решение: пусть в равнобедренном треугольнике АВС АС - основание, АВ и ВС - боковые стороны, равные по 13 см, ВМ медиана, равная 5см.
Так как треугольник равнобедренный, ВМ - высота данного треугольника, АМ = МС и треугольники АВМ и СВМ равны.
АМ = см
АС = 2*АМ = 24см
Р = 13 + 13 + 24 = 50см
S = 1/2 * ВМ * АС = 1/2 * 5 * 24 = 60см
2. во 2 задаче вы не написали чему равен угол D, пусть он будет α.
S = 1/2 * h (BC + AD)
h = CD * sinα
S = 1/2 * 10 * sinα (13 + 27) = 5*40 * sinα
Подставите значение угла D и получите ответ
3. Если в окружности пересекаются 2 хорды, то произведения их отрезков равны.
AM*MB = DM*MC = 120см
Составляем систему:
Работаем со вторым уравнением МС(23-МС) = 120
Решаем через дискриминант
D = 529 - 4*120 = 49
МС₁ = (23-7)/2 = 8
МС₂ = (23 + 7)/2 = 15
Подставляем в первое уравнение:
DM₁ = 23 - 8 = 15
DM₂ = 23-15 = 8
Значит, СМ и DM равны 8 и 15 см, или 15 и 8 см соответственно
4. Прямоугольный треугольник АВС (прямой угол С) вписан в окружность, значит центр окружности делит его гипотенузу на 2 одинаковые части. Гипотенуза данного треугольника АВ будет равна диаметру окружности, то есть 13 см.
катет ВС = 5см
АС = см
S = 1/2 * АС * ВС = 1/2 * 5 * 12 = 30см
1.
АВ и ВС боковые стороны
ВН высота
АВ = ВС = 13
ВН = 5
В п/у треугольнике НВС НС по теор. Пифагора = корню из 13*13 - 5*5 = 12
Медиана в р/б треуг. явл и высотой,и она делит противоположную сторону на равные отрезки => основание = 24см
Периметр = 24 +13+13 = 50
Площадь равна 1/2 ВН * АС
1/2 * 5 * 24 = 60
2.
S=1/2*6*8=24 см²
чтобы найти периметр,надо найти сторону. находим по теореме Пифагора:
√(1/2*6)²+(1/2*8)²=5
Р=5*4=20 см
3.
На фотографии
4.
теорема:Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.
Исходя из этой теоремы мы получаем: АМ*МВ=СМ*СD
подставляем и находим, 12*10=СМ*СD
СМ*СD=120(1)
так как Dc=23 то мы DC можем представить как CM+DM=23
выражаем отсюда DM, DM=23-CM(2)
теерь второе выражение подставляем в первое:
CM*(23-CM)=120
120=23CM-CM²
CM²-23CM+120=0
решая квадратное уравнение мы получаем: CM=15 DM=8
5.
если в окружность вписан прямоугольный треугольник, то его гипотенуза-это диагональ этой окружности, внашем случае она равна 6,5*2=13. по теореме пифагора найдем неизветсный катет, он равен:
корень из гипотенуза квадрате минус другой катет в квадрате, это равно 13*13-5*5=12
площадь треугольника это половина произведения катетов, то есть 0,5*5*12=30
ответ:30
Поделитесь своими знаниями, ответьте на вопрос:
Вчетырёхугольник abcd вписана окружность, ab = 8, cd = 30. найдите периметр четырёхугольника. p.s. у четырёхугольника все стороны разные.
ответ:76см