Соединим центр окружности O с точкой пересечения касательных. Пусть H точка пересечения касательных. Рассмотрим треугольник AOH : 1) В нём ∠ OAH = 90° так как радиус OA проведён в точку касания A касательной AH, и треугольник AOH - прямоугольный. 2) Так как касательные проведены из одной точки, то отрезок, соединяющий центр окружности и точку пересечения касательных ( в нашем случае этот отрезок OH) является биссектрисой угла AHB . Поэтому ∠AHO = ∠AHB / 2 = 85° / 2 = 42.5°. 3) Сумма двух острых углов в прямоугольном треугольнике равна 90°. То есть ∠AOH + ∠AHO = 90°. ∠AOH = 90° - ∠AHO = 90° - 42.5° = 47.5°
Треугольники AOH и BOH равны ( OH общая сторона. ∠AHB = ∠OHB . AH = BH - как отрезки касательных проведённых из одной точки) Поэтому ∠AOH = ∠BOH = 47.5° Тогда ∠ AOB = ∠AOH + ∠BOH = 95° Треугольник AOB равнобедренный так как OA = OB - как радиусы.Поэтому ∠ ABO = ∠ OAB = (180° - ∠ AOB) / 2. ∠ ABO = (180° - 95°) / 2 = 85° / 2 = 42.5° ответ:∠ ABO = 42.5°
Pavlovna897
27.05.2021
Диагонали ромба делят углы пополам, пересекаются под прямым углом и в точке пересечения делятся пополам. В результате пересечения диагоналей образуются прямоугольные треугольники с гипотенузой равной стороне ромба и катетами равными половине диагоналей. В нашем случае гипотенуза - 19, а один из острых углов - 30°. В прямоугольном треугольнике против угла 30° лежит катет в два раза меньший гипотенузы. Угол 30° - меньший из углов треугольника. Против меньшего угла лежит меньшая сторона. Таким образом меньшая диагональ равна 19/2*2=19 ед. И самый простой Второй угол ромба - 180-60=120°. Диагональ делит его на равносторонний треугольник. Меньшая диагональ равна 19 ед.
POMILEVAVladimirovna269
27.05.2021
Угол В=90, т.к. опирается на диаметр АС, треугольник АВС прямоугольный , ВС лежит напротив угла 30 и = 1/2 гипотенузы АВ. АВ = 2 х ВС = 2 х 4 =8, радиус = АВ/2=4 АВ = корень (АС в квадрате - ВС в квадрате) = корень (64 - 16) = 4 х корень3 Площадь треугольника = 1/2АВ х ВС = 1/2 х 4 х корень3 х 4 =8 х корень3 Площадь круга = пи х радиус в квадрате = пи х 16 Площадь заштрихованной = площадь круга - площадь треугольника = 16 х пи - 8 х корень3, если все перевести в цифры = 16 х 3,14 - 8 х 1,73 = 36,4 за правильность не ручаюсь.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Касательные в точках a и b к окружности с центром o пересекаются под углом 85°. найдите угол abo. ответ дайте в градусах.
2) Так как касательные проведены из одной точки, то отрезок, соединяющий центр окружности и точку пересечения касательных ( в нашем случае этот отрезок OH) является биссектрисой угла AHB . Поэтому ∠AHO = ∠AHB / 2 = 85° / 2 = 42.5°.
3) Сумма двух острых углов в прямоугольном треугольнике равна 90°. То есть ∠AOH + ∠AHO = 90°. ∠AOH = 90° - ∠AHO = 90° - 42.5° = 47.5°
Треугольники AOH и BOH равны ( OH общая сторона. ∠AHB = ∠OHB . AH = BH - как отрезки касательных проведённых из одной точки)
Поэтому ∠AOH = ∠BOH = 47.5°
Тогда ∠ AOB = ∠AOH + ∠BOH = 95°
Треугольник AOB равнобедренный так как OA = OB - как радиусы.Поэтому ∠ ABO = ∠ OAB = (180° - ∠ AOB) / 2.
∠ ABO = (180° - 95°) / 2 = 85° / 2 = 42.5°
ответ:∠ ABO = 42.5°