Две окружности касаются внешним образом и имеют общую внешнюю касательную. Найдем расстояние между точками касания на прямой.
Отрезки касательных из одной точки равны (синие отрезки). Центры окружностей лежат на биссектрисах углов, образованных касательными. Угол между биссектрисами смежных углов - прямой. Точка касания окружностей лежит на линии центров. Радиусы, проведенные в точку касания, перпендикулярны касательной. Таким образом синий отрезок является высотой из прямого угла и равен среднему пропорциональному проекций катетов, √(R1*R2).
Расстояние между точками касания на прямой равно 2√(R1*R2).
В задаче три пары аналогичных окружностей.
AB+BC=AC => 2√(x*25/16) +2√(9*25/16) =2√(9x) <=> 7√x =15 <=> x=225/49

Поделитесь своими знаниями, ответьте на вопрос:
Sбок=(1/2)*Pосн*l, где Sосн - площадь основания (правильный треугольник), h - высота пирамиды, Pосн - периметр основания, l - апофема=боковое ребро пирамиды.
Sосн=
Sбок=
Найдём объём пирамиды. Пусть SABC - пирамида, SO=h - её высота. Проведём СМ - высоту в равностороннем треугольнике основания (она также будет являться медианой) и медиану BL. Тогда точка O окажется в точке пересечения медиан. Медианы точкой пересечения делятся в отношении 2:1, считая от вершины, то есть CO=(2/3)CM. Из прямоугольного треугольника CMB найдём