Основание прямой призмы является параллелограмм, одна из сторон которого вдвое больше другой, а угол между ними = 150 градусов. Найдите высоту призмы, если площадь ее полной поверхности равна 108 см², а площадь боковой поверхности - 90 см²
ответ: 5 см
Объяснение: [ α = 150° ; Sпол =108 см² Sбок =90 см² ]
Пусть a и 2a длины сторон основания ( параллелограмма ABCD ) прямой призмы. Площадь основания: Sосн =a*2a*sin150° =a² , площадь боковой поверхности: Sбок = 6aH ,где H высота призмы ; 90 cм² = 6aH
Н = 15 см² / a . Для определеним величины a используем условие
2S(ABCD) + Sбок = Sпол ;
2a² + 90 см² = 108 см² ; a² = 9 см² ; a =3 см
H = 15 см² / a= 15 см²/ 3 см = 5 см.
ответ: 384см²
Объяснение: если периметр ромба=80см, то его каждая сторона=80÷4=20см. Пусть диагональ1=х, тогда диагональ2=х+8. Диагонали ромба пересекаясь делятся пополам и образуют 4 равных прямоугольных треугольника в которых половины диагоналей являются катетами, а сторона гипотенузой. Поэтому половина каждой диагонали будет равна:
х/2; (х+8)/2. Используя теорему Пифагора составим уравнение:
(х/2)²+((х+8)/2)²=20²
х²/4+(х²+16х+64)/4=400
(х²+х²+16х+64)/4=400
2х²+16х+64=400×4
2х²+16х+64=1600
2х²+16х-1600+64=0
2х²+16х-1536=0 |÷2
х²+8х-768=0
D=64-4×(-768)=64+3072=3136
x1= (-8-56)/2= -64/2= -32
x2= (-8+56)/2=48/2=24
x1 не подходит поскольку сторона не может быть отрицательной, поэтому используем х2=24
Диагональ 1 =24, тогда
диагональ 2=24+8=32см.
Теперь найдём площадь ромба, зная его диагонали по формуле: S=½×Д1×Д2
S=½×24×32=12×32=384см²
Поделитесь своими знаниями, ответьте на вопрос:
Боковые ребра треугольной пирамиды взаимно перпендикулярны и равны 5 см, 7 см, 10 см. найди площадь полной поверхности и объем пирамиды.
пусть CA=5 см и CB=10 см ,высота пирамиды будет CD = 7 см , действительно , DC ⊥ CA ;DC ⊥ CB ⇒DC⊥ плоскости (ABC) .
V =1/3 *(5*10)/2 *7 =175/3 (см³) . * * * 58 1/3 * * *
Sпол = S(ACD) + S(BCD) +S(ABC)+S(ADB) .
S(ACD) =AC*CD/2 =5*7/2 = 17,5 (см²) ;
S(BCD) =BC*CD/2 =10*7/2= 35 (см²) ;
S(ABC) =AC*BC/2 = 5*10/2 =25 (см²) .
Площадь треугольника ADB можно вычислить по формуле Герона (известны AB =√125 ; AD=√74 ; BD =√149 ) , но арифметика скучная ...
Поэтому поступаем иначе ; из вершины прямого угля С треугольника ABC проводим высоту CH ⊥ AB и H соединим с вершиной D.
AB ⊥ HC ⇒ AB ⊥ HD (HC проекция HD) ,<CHD =α.)
S(ABC) =S(ADB)*cosα ⇒ S(ADB)= S(ABC)/cosα =25/cosα.
S(ABC) =AC*BC/2 = AB *СН/2 ⇒ СН =5*10/√125 =10/√5 =2√5 .
Из ΔHCD по теореме Пифагора CD = √(CH²+CD²) =√((2√5)² +7²) =√69;
cosα =CH/CD =2√5/√69 ;
S(ADB)= 25/cosα =25√69/2√5 =2,5√345 (см²) .
Таким образом окончательно
Sпол =(77,5 +2,5√345 ) см².
ответ : ( 77,5 +2,5√345) см² , 175/3 см³.