Стоим ромб АВСД. Диагонали ромба АС и ВД и они пересекаються в т. О. В соответствии с условием угол АВО обозначим как 4*х, а угол ВАО обозначим как 5*х.
Рассмотрим треугольник АВО - он прямоугольный (угол О = 90 град, так как диагонали ромба пересекаються под прямым углом). Сумма углов в треугольнике равна 180 градусов. Запишем уравнение 4*х+5*х+90=180. Решим его и получим х=10.
Следовательно угол АВО равен 4*10=40 град, а угол ВАО равен 5*10=50 град.
Переходим к ромбу: угол АВО=углу СВО = 40 град; угол ВАО=углу ДАО = 50 град.
Следовательно углы А и С в трапеции равны по 100 градусов (50*2), а углы В и Д равны по 80 град (40*2).
Проверим правильность решения: сумма всех углов четырехугольника равна 360 градусов. У нас 100+100+80+80=360.
Стоим ромб АВСД. Диагонали ромба АС и ВД и они пересекаються в т. О. В соответствии с условием угол АВО обозначим как 4*х, а угол ВАО обозначим как 5*х.
Рассмотрим треугольник АВО - он прямоугольный (угол О = 90 град, так как диагонали ромба пересекаються под прямым углом). Сумма углов в треугольнике равна 180 градусов. Запишем уравнение 4*х+5*х+90=180. Решим его и получим х=10.
Следовательно угол АВО равен 4*10=40 град, а угол ВАО равен 5*10=50 град.
Переходим к ромбу: угол АВО=углу СВО = 40 град; угол ВАО=углу ДАО = 50 град.
Следовательно углы А и С в трапеции равны по 100 градусов (50*2), а углы В и Д равны по 80 град (40*2).
Проверим правильность решения: сумма всех углов четырехугольника равна 360 градусов. У нас 100+100+80+80=360.
Поделитесь своими знаниями, ответьте на вопрос:
Відрізок cd довжиною l лежить поза площиною прямокутного трикутника abc і перпендикулярний до його катетів ac i bc.знайти відстань від точки до середини гцпотенцзи e якщо ac=и bc=a
АВ²=АС²+ВС²=и²+а²
Т.е. точка Е - середина гипотенузы, то значит СЕ - это медиана ΔАВС, проведенная к гипотенузе, которая согласно свойства равна половине гипотенузы: СЕ=АВ/2
Из прямоугольного ΔДСЕ найдем гипотенузу ДЕ:
ДЕ²=СД²+СЕ²=l²+AB²/4=l²+(и²+а²)/4=(4l²+и²+а²)/4
ДЕ=√(4l²+и²+а²)/4=1/2*√(4l²+и²+а²)