Пусть плоскости α и β параллельны, прямая а перпендикулярна плоскости α. Докажем, что эта прямая перпендикулярна и плоскости β.
В плоскости α проведем две пересекающиеся прямые b и с.
Так как прямая а перпендикулярна плоскости α, то она перпендикулярна каждой из этих прямых.
В плоскости β проведем прямые d║b и е║с.
Если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой.
Значит, а ⊥ d и а ⊥ е.
Если прямая перпендикулярна двум пересекающимся прямым плоскости, то она перпендикулярна плоскости, ⇒
а ⊥ β.
Поделитесь своими знаниями, ответьте на вопрос:
Угол между высотами параллелограмма, проведенными с вершины тупого угла, равен 30 градусов. найдите площадь параллелограмма, если его высоты равны 6 см и 16 см.
Углы параллелограмма, прилежащие к одной стороне, в сумме равны 180° (свойство). Следовательно,
<A=<C=180°-150°=30°.
Тогда в прямоугольных треугольниках АВН и РВС стороны параллелограмма АВ и ВС - гипотенузы этих треугольников, а высоты ВН и ВР - катеты, лежащие против углов 30°.
Тогда стороны АВ и ВС равны 12см и 32см соответственно.
Противоположные стороны параллелограмма равны.
AD=ВС=32cм, DC=АВ=12см.
Площадь параллелограмма равна произведению стороны на высоту, проведенную к этой стороне.
Sabcd=32*6=192cм² или
Sabcd=12*16=192cм² .
ответ: S=192см² .