irinabaranova2760
?>

Стороны основания прямого параллелепипеда равны 6 и 4 см, угол между ними составляет 30 гр. диагональ большей грани равна 10 см. найти объем параллелепипеда

Геометрия

Ответы

o-lala88387
Площадь основания равна произведению длины стороны на высоту опущенную на эту сторону . Найдем высоту основания опущенную на на большую сторону . Она равна = sin30 град * 4 = 05 * 4 = 2 см. Тогда площадь основания равна = 6 * 2 = 12 см^2 .Объем прямого параллелепипеда равен =  V = S*H  , где  S - площадь основания ,  H - высота параллелепипеда . Зная длину диагонали и сторону большей грани параллелепипеда по теореме Пифагора найдем высоту параллелепипеда. Она равна = sqrt (10^2 - 6^2) =sqrt(64) = 8 см .Тогда  V = 12 * 8 = 96 см^3
Viktorovna_Yurevna

Теорема о пересечении серединных перпендикуляров к сторонам треугольника

В пункте 46 мы доказали, что биссектрисы треугольника пересекаются в одной точке. Оказывается, что серединные перпендикуляры к сторонам треугольника также пересекаются в одной точке.

Теорема. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.

Доказательство. Обозначим буквой O точку пересечения серединных перпендикуляров c и a к сторонам AB и BC треугольника ABC (рис. 33). Докажем, что точка O лежит на серединном перпендикуляре к стороне AC.

По теореме о серединном перпендикуляре к отрезку OA = OB и OB = OC, поэтому OA = OC. Таким образом, точка O равноудалена от концов отрезка AC и, следовательно, лежит на серединном перпендикуляре b к этому отрезку. Итак, все три серединных перпендикуляра к сторонам треугольника ABC пересекаются в точке O, и эта точка равноудалена от вершин A, B и C. Теорема доказана.

Замечание. Мы начали доказательство теоремы с того, что обозначили буквой O точку пересечения серединных перпендикуляров c и a к сторонам AB и BC. А верно ли, что прямые a и c пересекаются? Докажем, что это верно.

Проведем через точку B прямые p и q, что p ⊥ AB и q ⊥ BC (рис. 34). Поскольку прямые p и c перпендикулярны к прямой AB, то p || c.

Аналогично доказывается, что q || a. Прямая p пересекает прямую q (в точке B), поэтому она пересекает и параллельную ей прямую a (см. рис. 34); прямая a пересекает прямую p, поэтому она пересекает и параллельную ей прямую c. Итак, прямая a пересекает прямую c, что и требовалось доказать.

Объяснение:

MIKhAILOVNAAnton

Напиши уравнение окружности, которая проходит через точку 8 на оси Ox, и через точку 4 на оси Oy, если известно, что центр находится на оси Ox.(x−...)²+y²=...²

Объяснение:

Пусть центр окружности имеет координаты О(х;0)  .

Точки принадлежащие окружности имеют координаты (8;0)  и (0;4). Их координаты удовлетворяют уравнению окружности:

(x –х₀)²+ (y – у₀)² = R² , где (х₀;у₀)-координаты центра .

(8-х)²+(0-0)²=R² , или 64-16х+х²=R²

(0-х)²+(4-0)²=R²   или  х²+16=R² .      Вычтем из 1 уравнения 2. Получим :

                                    64-16х-16=0

                                    -16х=-48

                                      х=3.  Центр имеет координаты О(3;0).

Найдем R=√( (3-0)²+(0-4)² )=5.

(x− 3)²+y²=5²

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Стороны основания прямого параллелепипеда равны 6 и 4 см, угол между ними составляет 30 гр. диагональ большей грани равна 10 см. найти объем параллелепипеда
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

ladykalmikova81
Oksana-Kirakosyan1301
Vyacheslav_Nikolaevna
Максим_Нина
gigbes
stperelyot7833
valya-7777
polina0075880
goldservicepro
msk-academ
s-shulga
titovass9
phmad7
aromastil88
klodialeit36