Обратим внимание на то, что речь идет о противоположных углах, а не об углах, прилежащих к одной боковой стороне трапеции. Основания трапеции параллельны, каждая боковая сторона при них - секущая. Поэтому сумма углов, прилежащих к одной боковой стороне трапеции, равна 180°, так как они внутренние односторонние при пересечении параллельных прямых секущей.
Обозначим трапецию АВСД. По условию ∠А:∠С=1:2
∠Д:∠В=7:8
Примем угол А=а, тогда угол С=2а.
Примем угол Д=7b, тогда угол В=8b
a+8b=180°
2a+7b=180°
Приравняем левые части уравнений:
а+8b=2a+7b⇒
b=a
Подставим в первое уравнение вместо b – а, т.к. они равны.
Тогда а+8а=180°⇒
а=20° и b=20°.
Следовательно, ∠ВАД=20°, ∠АВС=8•20°=160°;
∠ВСД=2•20=40°; ∠СДА=7•20=140°.
Высоту этой фигуры можно найти из прямоугольного треугольника, образованного длинной диагональю основания, большей диагональю параллелепипеда и высотой.
Длинную диагональ основания можно найти по теореме косинусов. Знаем длину двух сторон треугольника, образованного сторонами основания, а угол между ними равен
180-60=120°
Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
a2 = 32 + 52 - 2bc·Cos(120)
a²=34-30·(-0,5)=49
a=7
Теперь очередь дошла до высоты параллелограмма.
h²=25²-7²=574
h=24 cм
Поделитесь своими знаниями, ответьте на вопрос:
Восновании пирамиды лежит равносторонний треугольник со стороной равной 2. одна из боковых граней также равносторонний треугольник и перпендикулярна основанию. найдите объем пирамиды.