Если соединить концы заданных отрезков x и y, получится параллелограмм, причем каждая из сторон будет параллельна диагонали четырехугольника и равна половине этой диагонали. Дело в том, что диагональ любого выпуклого четырехугольника делит его на два треугольника, и отрезок, соединяющий середины СОСЕДНИХ сторон, является в этом треугольнике средней линией. Поэтому такой отрезок параллелен диагонали и равен её половине.
Итак, у нас есть ПАРАЛЛЕЛОГРАММ, у которого заданы диагонали x и y, и угол между ними 60 градусов. Надо найти стороны (потом достаточно умножить результат на 2, и получится ответ).Если сразу обозначить искомые диагонали m и n, то стороны параллелограмма будут m/2 и n/2.
По теореме косинусов (ясно, что диагонали параллелограмма пересекаются в их серединах)
(m/2)^2 = (x/2)^2 + (y/2)^2 - 2*(x/2)*(y/2)*cos(60)
m^2 = x^2 + y^2 - x*y;
Аналогично
n^2 = x^2 + y^2 + x*y;
В сущности, это и есть ответ. :
m = корень(x^2 + y^2 - x*y);
n = корень(x^2 + y^2 + x*y);
Площадь боковой поверхности данной пирамиды состоит из площади двух прямоугольных треугольников и площади третьей грани, длину ребер которой мы не знаем.
Найдем высоту СН основания пирамиды.
Гипотенуза египетского треугольника АВС основания пирамиды равна 5 ( можно проверить по т. Пифагора)
Выразим высоту из треугольников АСН и СВН
Пусть АН=х, тогда ВН=5-х
СН²=АС²-АН²
СН²=ВС²-(5-х)²
Приравняем оба выражения СН²
АС²-АН²=ВС²-(5-х)²
9-х²=16-25+10х-х²
10х=18
х=1,8
СН²=АС²-АН²=9-3,24=5,76
Найдем по т.Пифагора высоту треугольника ASB
SH²=SC²+CH²=25+5,76=30,76
SH=√30,76= ≈ 5,55
S ASB=5·5,55:2=13,875
S ASC=5·3:2=7,5
S BSC=5·4:2=10
Sбок=13,75+7,5+10=≈31,375
Поделитесь своими знаниями, ответьте на вопрос:
очень нужно... боковая сторона равнобедренного треугольника делится точкой касания вписанной окружности в отношении 6:4, считая от вершины угла при основании треугольника. Найдите стороны треугольника, если его периметр равен 64 см.
Проводим в прямоугольной трапеции высоту CN , получаем прямоугольный треугольник NCD ;
по теореме Пифагора: квадрат гипотенузы равен сумме квадратов катетов.
В треугольнике NCD катет NC=AB= 15 дм;
катет ND=AD−AN=AD−BC= 31 − 11 = 20 дм.
CD2=NC2+ND2;CD2=152+202;CD2=625;CD=625−−−√;CD=25(дм).
Гипотенуза CD является большей боковой стороной данной трапеции.
Большая боковая сторона равна 25 дм.
Объяснение: