Surkova_Pavlovna
?>

Втупоугольном треугольнике abc , ab=bc ac=25 , ch — высота, ah=15 . найдите синус угла acb.

Геометрия

Ответы

Olgachalova111
Довольно простая задачка)
У нас получается равнобедренный треугольник ABC с основанием AC.В этом треугольнике после того,как провели высоту CH,образовался прямоугольный треугольник CHA с прямым углом CHA.В нём по теореме Пифагора:AC^2=AH^2+HC^2.Получаем,что HC=20.Высоты в равнобедренном треугольнике,проведённые из основания,будут равны(можно доказать по равенству треугольников).Итак,мы получаем,что высота к стороне BC (AM) будет равна высоте CH и равна 20.В образовавшемся прямоугольном треугольнике AMC (прямой угол AMC) можно найти синус угла ACM,который будет равен синусу угла ACB.
sin угла ACM = AH/AC(отношение противолежащего катета к гипотенузе)
sin угла ACM = 20/25=0,8
ответ: sin угла ACB=0,8
igor51766771
Если диагональное сечение правильной четырёхугольной пирамиды-равнобедренный прямоугольный треугольник, катет которого равен "а", то основание (гипотенуза) этого треугольника - диагональ квадрата основания пирамиды равно а√2.
Высота пирамиды - это высота равнобедренного 
прямоугольного треугольника, она равна половине его гипотенузы и равна H = а√2/2 = а/√2.

Так как гипотенуза основания пирамиды - диагональ квадрата, то сторона его равна а√2/√2 = а.
Это означает, что все рёбра пирамиды равны а, боковые грани - равносторонние треугольники.

Отсюда  площадь основания So = a², периметр основания
Р = 4а.
Находим апофему боковой грани: А = а*cos30 = a√3/2.

Площадь боковой поверхности пирамиды:
Sбок = (1/2)А*Р = (1/2)*(а√3/2)*4а = а²√3.

Объём пирамиды V=(1/3)So*H = (1/3)*a²*( а/√2) =
= a³/3√2.
mrFuz
Острый угол между диагоналями прямоугольника равен φ. Найти угол между диагональю прямоугольника и его большей

Дано:

ABCD — прямоугольник,

AC ∩ BD=O,

∠AOD=φ.

Найти: ∠ACD.

Решение:



1) ∠DOC=180º-∠AOD=180º-φ (как смежные).

ugol mezhdu diagonalyami pryamougolnika raven

2) Треугольник COD — равнобедренный с основанием CD

(OC=OD по свойству диагоналей прямоугольника).

Тогда

\[\angle OCD = \frac180}^o} - \angle AOD}}{2} = \frac180}^o} - ({{180}^o} - \varphi )}}{2} = \]

\[ = \frac180}^o} - {{180}^o} + \varphi }}{2} = \frac{\varphi }{2}.\]

(как угол при основании равнобедренного треугольника).

\[\angle ACD = \angle OCD = \frac{\varphi }{2}.\]

ответ: φ/2.



ugol mezhdu diagonalyu i storonoy pryamougolnika

Около любого прямоугольника можно описать окружность. Центр описанной около прямоугольника окружности — точка пересечения его диагоналей.

∠ACD — вписанный угол, ∠AOD — соответствующий ему центральный угол. Следовательно,

∠ACD=½ ∠AOD=φ/2.

Задача 2. (обратная к задаче 1)

Угол между диагональю прямоугольника и его большей стороной равен α. Найти меньший угол между диагоналями прямоугольника.

ugol mezhdu diagonalyu i storonoy pryamougolnika

1) Треугольник COD — равнобедренный с основанием CD

(так как OC=OD по свойству диагоналей прямоугольника).

Угол при вершине равнобедренного треугольника

∠COD=180º-2∠OCD=180º-2α.

2) ∠AOD=180º-∠COD (как смежные),

∠AOD=180º-(180º-2α)=180º-180º+2α=2α.

ответ: 2α.

Вывод: острый угол между диагоналями прямоугольника в два раза больше угла между диагональю прямоугольника и его большей стороной.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Втупоугольном треугольнике abc , ab=bc ac=25 , ch — высота, ah=15 . найдите синус угла acb.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

funny-furiya
kot271104
reinish23
samofar
terehin863
vardartem876
merx80
Роман
Stanislavovna1237
shuramuji
vlrkinn
alf206
Андреевич-Екатерина1974
alexandrxzx09
lakeeva90