Сухроб944
?>

1.найдите угол между стрелками часов, если они паказывают 1)3 часа 2)6 часов 3)4 часа 4)11 часов 5)7 часов

Геометрия

Ответы

annakorolkova79
1)прямой
2)развернутый
3)тупой
4)острый
5)тупой
Если отметь как лучший
ilds88

По признаку  параллельности прямых, если внутренние накрест лежащие углы  при прямых а и b и секущей с равны, то эти прямые параллельны. Значит, прямые а и b параллельны. Это раз.

Второе. Из условия параллельности прямых а и в вытекает равенство углов 3 и 5, которые тоже будут внутренними накрест лежащими уже при параллельных а и b и секущей с, и уже по свойству параллельных  прямых a и b и секущей с следует ∠3=∠5

2)∠2=∠6, ∠1=∠5; ∠4=∠8; ∠3=∠7- указаны пары соответственных углов при параллельных а и b  и секущей с. Поэтому по свойству соответственных углов данные углы равны.

3) ∠4+∠5=180°; ∠3+∠6=180°, это сумма внутренних односторонних при параллельных а и b  и секущей с. Сумма их равна 180° по свойству внутр. односторонних.

Подводим итог. Сначала доказали параллельность прямых а и b  при секущей с по признаку параллельности прямых, а затем для решения 1),2),3) воспользовались свойствами указанных углов при параллельных прямых а и b  и секущей с.

Tochkamail370

B2. Дан ΔABC, точка M — середина стороны AB, точка N — середина стороны BC, S_{AMNC} = 60. Найти S_{ABC}.

MN || AB, MN = \frac{1}{2}AB ⇒ ∠BMN = ∠BAC ⇒ ΔBMN подобный ΔBAC.

\frac{S_{BMN}}{S_{BAC}} =k^2\\\frac{S_{BMN}}{S_{BAC}} = \frac{MN}{AC} = (\frac{1}{2} )^2 = \frac{1}{4}

S_{AMNC}=S_{ABC}-S_{AMN} = 1-\frac{1}{4} =\frac{3}{4}\cdot S_{ABC}\\S_{ABC} = \frac{4}{3} \cdot S_{AMNC}\\ \\S_{ABC} =\frac{4}{3}\cdot 60 = 4\cdot 20 = 80

ответ: S_{ABC} = 80 ед. кв.

B3. AK — биссектриса ΔABC, АВ = 4, ВК = 2, КС = 3. Найти периметр ΔABC.

Биссектриса угла делит противоположную сторону на отрезки, пропорциональные прилегающим сторонам:

\frac{BK}{AB}=\frac{CK}{AC} \\\\\\frac{2}{4} = \frac{3}{AC} = AC = \frac{3\cdot 4}{2} =6

P = AB+AC+(BK+CK)

P = 4+6+(2+3) = 15

ответ: Периметр ΔАВС равен 15.

B4. Площадь прямоугольного ΔABC равна 360 см², АС:ВС = 3:4. Из середины гипотенузы восстановлен перпендикуляр КМ. Найти площадь ΔMKC.

BK = CK = \frac{1}{2}BC

∠ABC = ∠KMC ⇒ ΔCKM и ΔCAB подобны по двум углам и пропорциональной стороне.

k = \frac{KC}{AC}=\frac{2}{3}

\frac{S_{\triangle CKM}}{S_{\triangle CAB}}=k^2 = \left(\frac{2}{3} \right)^2 = \frac{4}{9} =\\\\S_{\triangle CKM}= \frac{4\cdot S_{\triangle CAB}}{9} = \frac{4\cdot 360}{9} = 4\cdot 40 = 160

ответ: S_{MKC} = 160 см².

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

1.найдите угол между стрелками часов, если они паказывают 1)3 часа 2)6 часов 3)4 часа 4)11 часов 5)7 часов
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Lenok33lenok89
mg4954531175
Gor Anatolevich
Станислав Роман994
infooem
grekova5
volodin-alexander
vainshakov
VSpivak3122
tshelokova
НатальяРуктешель472
linda3930
Тарбаева1243
ravshandzon3019835681
Arutyunovich