1) Сторона параллелограмма равна 21 см, а высота, проведённая к ней, 15 см. Найдите площадь параллелограмма.
a = 21 см
h = 15 см
S = ah = 21 · 15 = 315 см²
2) Сторона треугольника равна 5 см, а высота, проведённая к ней, в 2 раза больше стороны. Найти площадь треугольника.
а = 5 см
h = 2a = 2 · 5 = 10 см
S = 1/2 · ah = 1/2 · 5 · 10 = 25 см²
3) В трапеции основания равны 6 и 10 см, а высота равна полусумме длин оснований. Найдите площадь трапеции.
a = 10 см
b = 6 см
h = (a + b)/2 = (6 + 10)/2 = 16/2 = 8 см
S = (a + b)/2 · h = (6 + 10)/2 · 8 = 8 · 8 = 64 см²
4) Стороны параллелограмма равны 6 и 8 см, а угол между ними равен 30 градусам. Найти площадь параллелограмма.
а = 6 см
b = 8 см
α = 30°
S = ab · sinα = 6 · 8 · sin30° = 48 · 1/2 = 24 см²
a = 21 см
h = 15 см
S = ah = 21 · 15 = 315 см²
2) Сторона треугольника равна 5 см, а высота, проведённая к ней, в 2 раза больше стороны. Найти площадь треугольника.
а = 5 см
h = 2a = 2 · 5 = 10 см
S = 1/2 · ah = 1/2 · 5 · 10 = 25 см²
3) В трапеции основания равны 6 и 10 см, а высота равна полусумме длин оснований. Найдите площадь трапеции.
a = 10 см
b = 6 см
h = (a + b)/2 = (6 + 10)/2 = 16/2 = 8 см
S = (a + b)/2 · h = (6 + 10)/2 · 8 = 8 · 8 = 64 см²
4) Стороны параллелограмма равны 6 и 8 см, а угол между ними равен 30 градусам. Найти площадь параллелограмма.
а = 6 см
b = 8 см
α = 30°
S = ab · sinα = 6 · 8 · sin30° = 48 · 1/2 = 24 см²
Поделитесь своими знаниями, ответьте на вопрос:
На сторонах ав и cd прямоугольника abcd, взяты точки к и м так, что akcm - ромб диагональ ас составляет со стороной ав 30°. найдите стороны ромба если наибольшая сторона равна 3 дм.
AB=CD = 3
AC = AB / cos30 = 3/ ( кв корень из 3 /2) = 2*( кв корень из 3)
АО = AC/2 = кв корень из 3
угол КОА = 90 гр ( диагонали ромба перпендикулярны друг другу )
АК = АО / cos 30 гр = ( кв корень из 3) / ( кв корень из 3) / 2 ) = 2
стороны ромба AK = KC = CM = AM = 2 дм