kryukovaem
?>

Вправильной треугольной пирамиде sabc с вершиной s sa/ab=2. проведены высота ad треугольника sab и медиана bm треугольника abc. найдите отношение md/bd

Геометрия

Ответы

n-896458
Рассмотрим треугольник АSВ. Это равнобедренный треугольник с боковыми сторонами AS=SB=2*(AB) и основанием АВ.
АD - высота, проведенная к боковой стороне.
Из прямоугольного треугольника АSD:
AD²=AS²-SD² или AD²=AS²-(SB-DB)².
Из прямоугольного треугольника АDB:
AD²=AB²-DB².
Тогда AS²-(SB-DB)²=AB²-DB². Учитывая, что AS=2AB, а SB=AS, имеем: 4(АВ)²-4(АВ)²+4АВ*DB-DB² = AB²-DB² или
4АВ*DB = AB². Отсюда DB=(1/4)*AB.
Проведем прямую СD. Так как пирамида правильная, прямая СD будет также перпендикулярна ребру SB и, следовательно, плоскость
АDC - перпендикулярна этому ребру, в силу чего
MD - высота треугольника МSВ.
МВ=(√3/2)*АВ, так как это высота правильного треугольника АВС.
Тогда из прямоугольного треугольника МDB по Пифагору:
MD=√(MB²-DB²) или MD=√(3AB²/4-AB²/16) = АВ√11/4.
Отношение MD/BD=(АВ√11/4)/(AB/4)=√11.
ответ: MD/BD=√11.
P.S. MD можно найти и так: из прямоугольного треугольника ADB по Пифагору:
AD²=AB²-DB²=(15/16)AB². Из прямоугольного треугольника ADM (так как плоскость SMB перпендикулярна прямой АС) по Пифагору: MD²=АD²-АМ²=(15/16)AB²-(1/4)АВ²=(11/16)АВ². MD=АВ√11/4.

Вправильной треугольной пирамиде sabc с вершиной s sa/ab=2. проведены высота ad треугольника sab и м
Pavlovna897
Если достроим прямоугольный треугольник до прямоугольника так, чтобы гипотенуза была его диагональю (то есть присоединим к треугольнику второй такой же точно), то площадь такого прямоугольника будет ровно в 2 раза больше площади треугольника, то есть 2 * 512 * корень(3) = 1024*корень(3).

А также площадь прямоугольника равна произведению катетов. Обозначим меньший катет буквой х, тогда больший будет х*tg(x) = x*корень(3).

Итого, имеем площадь прямоугольника х*х*корень(3) = 1024*корень(3).

Корень(3) сокращаем, остаётся х*х = 1024.
Отсюда х = корень(1024) =  32.

Такой получился ответ - меньший катет = 32.
kristina
 Перпендикуляр, проведенный через середину боковой стороны равнобедренного треугольника,  делит высоту, проведенную к основанию, на отрезки 17 см и 8 см, считая от вершины.
Найти площадь и периметр данного треугольника.

Обозначим вершины треугольника А, В, С, причем АВ=ВС. 

Т.к. ∆ АВС - равнобедренный, высота ВН, проведенная к основанию, является медианой, и, следовательно, ВН - срединный перпендикуляр. Точка пересечения срединных перпендикуляров треугольника - центр описанной вокруг него окружности. 

Расстояние от О  до вершин А, В и С равно радиусу.  R=ВО=СО=17 см. 

∆ СОН - прямоугольный, его гипотенуза и один из катетов - из Пифагоровых троек ( 8, 15,17), ⇒,  НС=15 см ( проверьте по т.Пифагора).

Отсюда АС=2•15=30 см

По т.Пифагора  AB=ВС=√(BH*+CH*)=√(625+225)=√850=5√34 см

Р=30+2•5√34=10•(3+√34) см

S=BH•CH=375 см²

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Вправильной треугольной пирамиде sabc с вершиной s sa/ab=2. проведены высота ad треугольника sab и медиана bm треугольника abc. найдите отношение md/bd
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Apresov
Александра_Наталья1417
darialyagina
marinanx
xarchopuri22
rmitin
gurina50
ilysozkn27
aci2003
vusokaya13
venera2611
kabanovae
victoria-112296363
detymira
om805633748