Равнобедренный △ АВС
∠А = ∠С = 40° (углы при основании)
Найти:∠В = ?°.
Решение:Сумма углов треугольника равна 180°.
=> ∠В = 180° - (40° + 40°) = 100°
ответ: 100°Задача#2.Дано:△АВС
∠А < в 4 раза ∠В
∠С < на 90° ∠В
Найти:а) ∠А, ∠В, ∠С
б) сравнить АВ и ВС.
Решение:а) Пусть х - ∠А, 4х - ∠В, 4х - 90 - ∠С
Сумма углов треугольника равна 180°.
х + 4х + (4х - 90) = 180
9х = 90
х = 30
30° - ∠А
30° * 4 = 120° - ∠В
120° - 90° = 30° - ∠С
б) Так как ∠А = ∠С = 30° => △АВС - равнобедренный.
=> АВ = ВС, по свойству равнобедренного треугольника.
ответ: а) 30°, 30°, 120°. б) АВ = ВС.Задача#3.Дано:△АВС
∠АВЕ = 104°
∠DCF = 76˚
AC = 12 см
Найти:АВ = ? см.
Решение:Сумма смежных углов равна 180°.
∠АВЕ смежный с ∠АВС => ∠АВС = 180° - 76° = 104°
Вертикальные углы равны.
∠DCF = ∠ACB = 104˚
Так как ∠АСВ = ∠АВС = 104° => △АВС - равнобедренный.
=> АВ = АС = 12 см, по свойству равнобедренного треугольника.
ответ: 12 см.Поделитесь своими знаниями, ответьте на вопрос:
Диагонали прямоугольника abcd пересекаются в точке о угол abo равен 36 градусов . найдите угол aod
1. угол вао = угол аво = 36 градусов.
2. угол дао = 90-36=54 градуса
3. угол адо = угол дао = 54 градуса
4. угол аод = 180 - 54 - 54 = 72 градуса.
ответ. 72 градуса.
или второй способ.
угол аод является внешним углом треугольника аов и равен сумме углов аво и вао, т.е., 36+36=72 градуса.
ответ. 72 градуса.