Условие задачи НЕ КОРРЕКТНО. По координатам двух противоположных вершин прямоугольника (B и D) определить координаты двух других вершин (А и С) невозможно без дополнительного условия. Дело в том, что вершины прямоугольника лежат на окружности диаметра BD и их бесконечное множество.
Смотри рисунок.
Любой точке на окружности соответствует симметричная ей относительно центра О точка, соединив которые с точками В и D получим прямоугольник, так как углы ВАD и ВСD - прямые (вписанные, опирающиеся на дивметр).
Найдем координаты центра окружности, описанной около данного прямоугольника и ее радиус:
О((-4+2)/2; (2-3)/2) или О(-1;-0,5).
R=|ОВ| = √((-4-(-1))²+(2-(-0,5)²) =√15,25. Тогда уравнение окружности (x+1)² + (y+0,5)² =15,25.
ЛЮБАЯ точка на этой окружности - вершина А, симметричная ей относительно центра О точка - вершина С.
Найдем координаты вершин А и С ПРИ УСЛОВИИ, что стороны прямоугольника параллельны осям ординат.
В уравнение окружности подставим координату Х=-4 и найдем для нее соответствующую координату Y: (-3)² + (y+0,5)² =15,25. => Y² + Y -6 = 0. => Y1=3, Y2=-2. Точно так же для точек с координатой Х=2. Y1=2 и Y2=-3. Тогда имеем: А(-4;-3) и С(2;2).
Поделитесь своими знаниями, ответьте на вопрос:
Периметр равнобедренного треугольника равен 44 см.его боковая больше основания на 4 см.вычислите длины сторон треугольника.каков ответ?
Дано:
Pабс = 44 см
Боковая сторона - х+4 (так как она больше основания на 4 см, т.е. основание х)
Основание - х.
Решение:
1) Равнобедренный треугольник - треугольник, у которого две стороны равны. Две боковые стороны будут равны: x+4+x+4+x=44
3х=44-4-4
3х=36
х=36:3
х=12
2) 12 см - основание треугольника.
Боковая сторона 1 = 12 (х) + 4 = 16 см - первая боковая сторона.
Боковая сторона 1 = 12 (х) + 4 = 16 см - вторая боковая сторона.
ответ: 12 см; 16 см; 16 см.