Николаевна_Анна670
?>

Периметр равнобедренного треугольника равен 44 см.его боковая больше основания на 4 см.вычислите длины сторон треугольника.каков ответ?

Геометрия

Ответы

inessa12006
И так, начнём. Равнобедренный треугольник - треугольник, у которого две стороны равны, а третья является основанием. И так. Представим треугольник. Условного назовём его АБС. 
Дано:
Pабс = 44 см
Боковая сторона - х+4 (так как она больше основания на 4 см, т.е. основание х)
Основание - х.
Решение:
1) Равнобедренный треугольник - треугольник, у которого две стороны равны. Две боковые стороны будут равны: x+4+x+4+x=44
3х=44-4-4
3х=36
х=36:3
х=12

2) 12 см - основание треугольника.
Боковая сторона 1  = 12 (х) + 4 = 16 см - первая боковая сторона.
Боковая сторона 1  = 12 (х) + 4 = 16 см - вторая боковая сторона.
ответ: 12 см; 16 см; 16 см.
SEMENOV25352

Условие задачи НЕ КОРРЕКТНО. По координатам двух противоположных вершин прямоугольника (B и D) определить координаты двух других вершин (А и С) невозможно без дополнительного условия.  Дело в том, что вершины прямоугольника лежат на окружности диаметра BD и их бесконечное множество.

Смотри рисунок.

Любой точке на окружности соответствует симметричная ей относительно центра О точка, соединив которые с точками В и D получим прямоугольник, так как углы ВАD и ВСD - прямые (вписанные, опирающиеся на дивметр).

Найдем координаты центра окружности, описанной около данного прямоугольника и ее радиус:

О((-4+2)/2; (2-3)/2) или О(-1;-0,5).

R=|ОВ| = √((-4-(-1))²+(2-(-0,5)²) =√15,25. Тогда уравнение окружности (x+1)² + (y+0,5)² =15,25.

ЛЮБАЯ точка на этой окружности - вершина А, симметричная ей относительно центра О точка - вершина С.

Найдем координаты вершин А и С ПРИ УСЛОВИИ, что стороны прямоугольника параллельны осям ординат.

В уравнение окружности подставим координату Х=-4 и найдем для нее соответствующую координату Y: (-3)² + (y+0,5)² =15,25. => Y² + Y -6 = 0.  => Y1=3, Y2=-2. Точно так же для точек с координатой Х=2. Y1=2 и Y2=-3. Тогда имеем: А(-4;-3) и С(2;2).


Определите координаты вершин а и с прямоугольника abcd, если в (−4; 2) и d (2; −3)
yamalsva45
Условие задачи не полное. При таком условии вершины В и D будут лежать диаметрально противоположно на окружности с диаметром АС и центром в точке О(2;0,5) - середине отрезка АС.
Координаты центра находятся как полусуммы соответствующих координат начала и конца отрезка АС, то есть Хо=(5-1)/2=2 и
 Yo=(3-2)/2=0,5.
Уравнение окружности с центром в точке О(2;0,5) и радиусом АО, который находим как модуль вектора АО:
|АО|=√(3^2+2,5^2)=√15,25, имеет вид:
(X-2)^2+(Y-0,5)^2=15,25.
Мы можем убедиться, что один из бесчисленных вариантов решения,  когда стороны прямоугольника параллельны осям координат и тогда В(-1;3) а D(5;-2), удовлетворяет этому уравнению окружности.
Для точки В(-1;3):
(3)^2+(2,5)^2=15,25.
Для вершины D(5;-2):
(3)^2+(-2,5)^2=15,25.

Доказано, что условие задачи не полное и задача имеет бесчисленное множество решений.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Периметр равнобедренного треугольника равен 44 см.его боковая больше основания на 4 см.вычислите длины сторон треугольника.каков ответ?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

elyashatdinova
yuliasam
KseniGum9
murza2007
mail66
miyulcha8077
sales5947
Чиркина999
ЛАРИСА Насоновская231
Fedorovich_Aleksandrovich685
Malenyuk
olimov9
horina12
Shitikov-M.A.1307
yok887062