Существует,так как средняя линия будет параллельна общей стороне обоих треугольников АВ,а значит и всей плоскости АВС
Kubataeva Nikolaevich1389
14.01.2022
1)Если вам даны точки с координатами (х1, у1, z1), (х2, у2, z2), (х3, у3, z3), найдите уравнение прямой, используя координаты любых двух точек, например, первой и второй. Для этого подставьте соответствующие значения в уравнение прямой: (х-х1)/(х2-х1)=(у-у1)/(у2-у1)=(z-z1)/(z2-z1). Если один из знаменателей равен нулю, просто приравняйте к нулю числитель.2Найти уравнение прямой, зная две точки с координатами (х1, у1), (х2, у2), еще проще. Для этого подставьте значения в формулу (х-х1)/(х2-х1)=(у-у1)/(у2-у1).Получив уравнение прямой, проходящей через две точки, подставьте значения координат третьей точки в него вместо переменных х и у. Если равенство получилось верное, значит все три точки лежат на одной прямой. Точно так же можете проверять принадлежность этой прямой других точек.4Проверьте принадлежность всех точек прямой, проверив равенство тангенсов углов наклона соединяющих их отрезков. Для этого проверьте, будет ли верным равенство (х2-х1)/(х3-х1)=(у2-у1)/(у3-у1)=(z2-z1)/(z3-z1). Если один из знаменателей равен нулю, то для принадлежности всех точек одной прямой должно выполняться условие х2-х1=х3-х1, у2-у1=у3-у1, z2-z1=z3-z1.
подставляем координаты точек В D и С 2а-d=0 4b-d=0 3a+3b+3√2c-d=0
положим а=2 , тогда b=1 d=4 c=-5/(3√2) нормализуем уравнение плоскости. коэффициент √(4+1+25/18)=√(115/18)= к
2/к*x + 1/k*y - 5/(3√2k)z -4/k=0 расстояние до точки (1;0;0) подставляем в уравнение 2/к- 4/к = -2/к = -2√18/√115=-6√230/115 расстояние модуль этого числа 6√230/115. рисунок есть у ранее решившего :)
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Точка м расположена вне плоскости треугольника авс . существует ли среди средних линий треугольника мав такая, которая параллельна плоскости авс?