В окружность с центром в точке О вписан △АВС.
∠ОСА = 37°
Найти:∠АВС - ?
Решение:Так как СО и ОА - радиусы данной окружности => СО = АО.
=> △СОА - равнобедренный => ∠ОСА = ∠ОАС = 37°, по свойству равнобедренного треугольника.
"Сумма углов треугольника равна 180°".
=> ∠СОА = 180° - (37° + 37°) = 106°
∠СОА - центральный.
"Центральный угол - угол, у которого вершина сам центр окружности".
"Центральный угол равен дуге, на которую он опирается".
=> дуга АС = 106°
∠АВС - вписанный.
"Вписанный угол - угол, у которого вершина находиться на окружности, а стороны пересекают окружность".
"Вписанный угол измеряется половиной дуги, на которую он опирается".
∠АВС опирается на ту же дугу, что и ∠СОА => ∠АВС = 106°/2 = 53°
ответ: 53°
"Катеты прямоугольного треугольника равны 9см и 12см. В вершине прямого угла построен перпендикуляр к плоскости треугольника длиной 3см. Найти расстояния от концов перпендикуляра до гипотенузы. DA. это катет прямоугольного треугольника ADE. Второй катет известен, находишь гипотенузу DE."
Объяснение:
Расстоянием от А до СВ , будут АD, т.к АD⊥BС.
Расстоянием от Е до СВ , будут ЕD, т.к ЕD⊥BС по т. о трех перпендикуляра: если проекция АD перпендикулярна прямой лежащей в плоскости ВС, то и наклонная ЕD перпендикулярна ВС. .
1) ΔАВС-прямоугольный, по т. Пифагора СВ=√(9²+12²)=√225=15 (см).
По т. о среднем пропорциональном АС²=СD*СВ⇒ СD=144:15=9,6(см).
ΔАСD-прямоугольный , по т. Пифагора АD=√(12²-9,6²)=7,2 (см).
2)ΔАЕD-прямоугольный , по т. Пифагора ЕD=√(3²+7,2²)=7,8 (см).
Поделитесь своими знаниями, ответьте на вопрос:
sп.п.=2sосн+4sб.п
1)2sосн=d1*d2=48см^2
4a^2=d1^2+d2^2
a^2=(36+64)/4
a=5см
2)4sб.п=4*(10*5)=200см^2
3)sп.п.=200+48=248см^2