радіус кола - буде висотою правильного трикутника, з яких складається даний шестикутник, тому вона дорівнює 8 * √ 3 / √3/ 2 = 16
4√2 дм.
Объяснение:
Если в прямоугольном треугольнике один острый угл равен α=45° , то второй острый угол тоже равен 45° . Потому что сумма внутренних углов треугольника равна 45+45+90=180°. Прямоугольном треугольнике с острым углом α= 45°, катеты имеют одинаковую длину. Такой треугольник выходит, если квадрат разделить пополам диагональю , а диагональ квадрата равна
Dкв=а×√2 , здесь "а" длина стороны квадрата. Выходит что диагональ квадрата равна гипотенузе прямоугольного треугольника с острыми углами в 45°.
1) Удалите номера неверных утверждений:
1. Если один из острых углов прямоугольного треугольника равен 73о, то второй острый угол равен 27о. - неверно, 17°
2. Если углы при основании равнобедренного треугольника равны по 60о, то такой треугольник – правильный. - верно, третий угол тоже 60°
3. Существует треугольник со сторонами 3,4,5. - существует, это прямоугольный треугольник, "египетский"
2) Удалите номер верных утверждений:
1. Если два катета одного треугольника соответственно равны двум катетам другого треугольника, то такие треугольники равны. - верно
2. Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180о. - верно
3. Если в треугольнике два угла равны, то он равнобедренный. - верно
3) Сформулируйте теорему о катете прямоугольного треугольника, лежащего против угла в 30 градусов. - Катет, лежащий против угла 30 градусов, равен половине гипотенузы.
4) Острые углы прямоугольного треугольника относятся как 12:18. Найдите эти углы.
Сумма острых углов прямоугольного треугольника составляет 90 градусов. Пусть ∠1=12х°, ∠2=18х°, тогда 12х+18х=90; 30х=90; х=3.
∠1=12*3=36°; ∠2=18*3=54°
ответ: 36°, 54°
Поделитесь своими знаниями, ответьте на вопрос:
r=a/(2tg(360/2*n))
a=2r*tg(360/12)=2*8√3*tg(30)=16√3*1/√3=16