azelenkov
?>

Найти среднюю линию трапеции, если её основания равны 6см и 14см.

Геометрия

Ответы

helena-belozerova
Средняя линия трапеции равна полусумме ее оснований.
(6+14):2=10 см
nadjasokolova2017

Объяснение:

given, cosA + cosB + cosC = 3/2

=> 2(2cos(A + B)/2 . cos(A - B)/2) + 2cosC = 3

=> 2(2cos(pi/2 -c/2) .cos(A - B)/2 + 2(1 - 2sin^2(A/2)) = 3

=> 4sin(c/2) .cos(A - B)/2 + 2 - 4sin^2(A/2)) = 3

=> 4sin^2(A/2) - 4sin(c/2) .cos(A - B)/2 + 1 = 0

This is a quadratic equation in sinc/2, and it has real roots

Therefore , Descriminant >= 0

=> (-4cos(A - B)/2)^2 - 4*4*1 >= 0

=> (cos(A - B))^2 >= 1

=> cos(A - B) = 1, since cosine of any angle can't be > 1

=> A - B = 0

=> A = B

Similarily we can prove that B = C

Thus A = B = C, triangle is equilateral

zinasekina4

площадь трапеции

площадь трапеции равна произведению полусуммы ее оснований на высоту:

s = ((ad + bc) / 2) · bh,

где  высота трапеции  — это перпендикуляр, проведенный из любой точки одного из оснований к прямой, содержащей другое основание.

доказательство.

рассмотрим трапецию  abcd  с основаниями  ad  и  bc, высотой  bh  и площадью  s.

докажем, что  s = ((ad + bc) / 2) · bh.

диагональ  bd  разделяет трапецию на два треугольника  abd  и  bcd, поэтому  s = sabd  + sbcd. примем отрезки  ad  и  bh  за основание и высоту треугольника  abd, а отрезки  bcи  dh1  за основание и высоту треугольника  bcd. тогда

sabc  = ad · bh / 2, sbcd  = bc · dh1.

так как  dh1  = bh, то  sbcd  = bc · bh / 2.

таким образом,

s = ad · bh / 2 + bc · bh = ((ad + bc) / 2) · bh.это можно только с доказательством

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найти среднюю линию трапеции, если её основания равны 6см и 14см.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Pavlov447
ElenaSkvortsova2
kampina1
NatalyaAlekseevich1644
nmakarchuk
firsova5911
kolgatin69
kyzua2475
Aleksandr-Andrei
egorov
Andei
lestnica
dilanarthur27
ver2bit
olesyadeinega41