tomogradandrey
?>

Даны векторы a{3; -4} и b{1; 2}.найдите вектор c, если он удовлетворяет условиям: a*c = -40 и b*c=0

Геометрия

Ответы

Есартия52
ответ с решением в фотке!!
Даны векторы a{3; -4} и b{1; 2}.найдите вектор c, если он удовлетворяет условиям: a*c = -40 и b*c=0
rpforma71189
Обозначим параллелограмм буквами АВСД с углом А=45 град. О - точка пересечения диагоналей. ОХ высота к АД. ОУ высота к ВС. Треугольник ВОС= треугольнику АОД. Значит их высоты равны и ОХ=ОУ=корень из 2. Значит высота параллелограмма АВСД - 2*корень из 2. Проведем из точки С высоту к АД. М- точка пересечения высоты с АД. Треугольник ДМС прямоугольный и равнобедренный. Значит СМ=МД=2корня из2. По теореме Пифагора находим, что СД2=ДМ2+СМ2=8+8=16. Отсюда СД=корень из 16=4. т.к. треугольник АВО= треугольнику СОД, то их высоты равны. Сл=но высота параллелограмма равна 6см. Площадь параллелограмма равно основание*на высоту. S=6*4=24
timonina29
Задача 1
Дано:
тр АВС р/б
АС  - основание
АН - высота
АН=24 см
ВС=АВ=25 см
Р-?

Решение:
1) Тр АВН (уг Н=90*) по т Пифагора  ВН=√(625-576)=√49=7 см
2) НС=ВС-ВН, НС=25-7=18 см
3) Тр АНС ( уг Н=90*) по т Пифагора АС= √(576+324)=√900 = 30 см
4) Р(тр АВС) = 2*25 + 30  = 50+30 = 80 см

Задача 2
Дано:
тр АВС - р/б 
АС - основание
АН - высота
АН=24 см
АС=30 см
Р(тр АВС) -?

Решение:
1) Тр АНС ( уг Н=90*) по т Пифагора НС = √((900-576)=√324 = 18 см
2) Пусть х см равен отрезок ВН, тогда каждая из боковых сторон р/б треугольника равна (х+18) см. По т Пифагора составляем уравнение:
576+x^2 =  (x+18)^2
576+x^2 = x^2 + 36x + 324
36x=576 - 324
36x = 252
x=252:36
x=7 (cм) длина отр ВН
3) АВ=ВС = ВН+НС; АВ=ВС=7+18=25 (см)
4) Р(трАВС)= 25*2+30=50+30=80 см




Задача 1
дано:
тр АВС р / б
АС - підстава
АН - висота
АН = 24 см
НД = АВ = 25 см
Р- ?
 рішення:
1 ) Тр АВН ( уг Н = 90 * ) по т Піфагора ВН = √ ( 625-576 ) = √49 = 7 см
2 ) НС = НД - ВН , НС = 25-7 = 18 см
3 ) Тр АНС ( уг Н = 90 * ) по т Піфагора АС = √ ( 576 + 324 ) = √900 = 30 см
4 ) Р ( тр АВС ) = 2 * 25 + 30 = 50 + 30 = 80 см
 
Задача 2
дано:
тр АВС - р / б
АС - підстава
АН - висота
АН = 24 см
АС = 30 см
Р ( тр АВС ) - ?
 рішення:
1 ) Тр АНС ( уг Н = 90 * ) по т Піфагора НС = √ ( ( 900-576 ) = √324 = 18 см
2 ) Нехай х см дорівнює відрізок ВН , тоді кожна з бічних сторін р / б трикутника дорівнює ( х + 18 ) см . По т Піфагора складаємо рівняння :
576 + x ^ 2 = ( x + 18 ) ^ 2
576 + x ^ 2 = x ^ 2 + 36x + 324
36x = 576 - 324
36x = 252
x = 252 : 36
x = 7 ( cм) довжина отр ВН
3 ) АВ = ВС = ВН + НС ; АВ = ВС = 7 + 18 = 25 ( см )
4 ) Р ( трАВС ) = 25 * 2 ​​+ 30 = 50 + 30 = 80 см

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Даны векторы a{3; -4} и b{1; 2}.найдите вектор c, если он удовлетворяет условиям: a*c = -40 и b*c=0
Ваше имя (никнейм)*
Email*
Комментарий*