Отрезки МК и NP параллельны соседним сторонам прямоугольника, => соответственно равны им, пересекаются под прямым углом и делят АВСD на 4 прямоугольника, (неважно, равной или разной площади). Обозначим точку пересечения МК и NP буквой О.
а)
Стороны четырехугольника МNKP являются диагоналями получившихся прямоугольников и делят каждый из них пополам (свойство). Поэтому площадь MNKP равна сумме площадей этих половин, т.е. равна половине площади ABCD.
б)
Площадь выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними.
Так как S(ABCD)=AB•CD, МК=АD и NP=AB, а sin90°=1, то S(MNKP)=MK•NP•sin90°=0,5•S(ABCD).
в)
S(MNKP)=S∆MNP+S∆NKP=0.5•MO•NP+0.5•KO•NP=0,5•NP•(MO+OK) => S(MNKP)=0,5•NP•MK =>
S(MNKP) =0,5•S(ABCD), т.к. NP=AB и МК=АD
Для ответа на вопрос, поставленный задачей, достаточно рассмотреть данный во вложении рисунок.
К стороне СD пристроен равносторонний треугольник CDE, все углы которого равны 60°, а стороны СЕ=DE=CD.
Точка Е не может находиться на стороне квадрата АВ, так как в таком случае получившийся треугольник равносторонним не будет.
∠АDE= ∠ADC+∠CDE=90°+60°=150°
Так как СD- сторона данного в условии квадрата, то
АD=DE,
и треугольник ADE- равнобедренный с углами при основании АЕ=15 градусов.
Так как ∠ СЕD=60°,
∠ АЕС=60°-15°=45°
Поделитесь своими знаниями, ответьте на вопрос:
a=4
b=12