Объяснение:
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Дано: ΔАВС, ΔА₁В₁С₁.
АС = А₁С₁, ∠А = ∠А₁, ∠С = ∠С₁
Доказать:
ΔАВС = ΔА₁В₁С₁.
Доказательство:
Наложим треугольники друг на друга равными сторонами так, чтобы вершины В и В₁ оказались по одну сторону от прямой АС.
Равные стороны совпадут, совпадут и углы, прилежащие к ним. Значит, совпадут и вершины В и В₁.
Объяснение:
Диагонали точкой пересечения делятся пополам в точке О.
Найдем координаты О по формулам середины отрезка:
А( 1 ; 0) ,С( -5 ;6). О-середина АС ,
х(О)= ( х(А)+х(С) ):2 у(О)= ( у(А)+у(С) ):2
х(О)=(1-5):2=-2 у(О)= (0+6):2=3
О(-2 ;3)
В( 1;2) ,О( -2 ;3). О-середина ВД , найдем координаты т Д.
х(О)= ( х(В)+х(Д) )/2 у(О)= ( у(В)+у(Д) )/2
2*х(О)= х(В)+х(Д) 2*у(О)= у(В)+у(Д)
х(Д) = 2*х(О)-х(В) у(Д) = 2*у(О)-у(В)
х(Д) = 2*(-2)-1 у(Д) = 2*3-2
х(Д) = -5 у(Д) = 4
Д(-5; 4)
Поделитесь своими знаниями, ответьте на вопрос:
Заранее может ли центр вписанной в треугольник окружности находится вне этого треугольника?