Из прямоугольного треугольника ВАН: sin ВАН = BH/AB = 5√3/10 = √3/2 Значит ∠ВАН = 60°. ∠ВСА = ∠ВАС = 60° как углы при основании равнобедренного треугольника. ∠АВС = 180° - 2·60° = 60°
ответ: все углы треугольника по 60°.
Из прямоугольного треугольника АВН по теореме Пифагора: АН = √(АВ² - ВН²) = √(100 - 25·3) = √(100 - 75) = √25 = 5 см Катет АН равен половине гипотенузы АВ, значит ∠АВН = 30°. В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой, тогда ∠АВС = 60°.
∠ВАС = ∠ВСА = (180° - 60°)/2 = 60°
ответ: все углы треугольника по 60°.
elenalukanova
13.12.2022
Дано: ABCD - ромб, уголB=60С;
Окружность O1(O,OF) вписана в ромб;
Окружность О2(P,PE) вписана так, что касается лучей AD и BC и стороны CD;
CE=2