ТК. Внешний угол является смежным в внутренним углом тругольника, а сумма смежных углов =180 , то найдем соответсвующий ему внутренний: 180-40 = 140. Этот угол явлеятся углом при вершине, т.к . в треугольнике не может быть большо одного тупого угла. Следовательно найдем углы при основании. Тут есть два т.к. сумма углов труегольника = 180, а углы при основании равнобедренного треугольника равны). Либо второй т.к. внешний угол равен сумме двух внутренних, не смежных с ним углов, а углв при основаннии равнобедренного равны).
ответ: 20 градусов.
Дано:
Окружность (О; r)
∠OBA = 30°
CA — касательная
Найти:
∠BAC — ?
1) Так как радиусы окружности равны, значит, две стороны треугольника ABO равны. ⇒ ΔABO равнобедренный (AO = OB).
У равнобедренного треугольника углы при основании равны, следовательно: ∠OBA = ∠OAB = 30°.
2) Касательная к окружности перпендикулярна радиусу, проведённому в точку касания, значит CA ⊥ OA. ∠OAC = 90°.
3) ∠BAC = ∠OAC - ∠OAB.
∠BAC = 90° - 30° = 60°.
ОТВЕТ: 60°
Быстрое решение (пояснения писать обязательно нужно):
1) ΔABO равнобедренный, так как радиусы окружности, составляющие стороны треугольника, равны (AO = OB). Следовательно, ∠OBA = ∠OAB = 30°.
По свойству касательной, CA ⊥ OA ⇒ ∠OAC = 90°. Значит:
2) ∠BAC = 90° - 30° = 60°
ОТВЕТ: 60°
Поделитесь своими знаниями, ответьте на вопрос:
Найдите длину гипотенузы ав прямоугольного треугольника авс, если известно что, вс =2, 5 дм, угол в =60 градусов.
В прямоугольном треугольнике напротив угла в 30° лежит катет, равный половине гипотенузы.
Значит, АВ = 2 * BC = 2 * 2,5 = 5 дм