Обозначим трапецию АВСД, с большим основанием АД. Тогда опустим из угла С высоту СК к этому основанию. Получим треугольник СКД. Это равнобедренный треугольник,т.к угол СКД 90 градусов, а СДК 45(соответственно, другой угол тоже 45) Сторона СК=АВ=9см (т.к получается,что это стороны прямоугольника АВСК. Соответственно, сторона КД=СК=9см(тк треугольник равнобедренный). Сторона АД=23 см, а КД=9 см, тогда найдем длину АК: 23-9=14 см. Вернемся к прямоугольнику АВСК, в котором ВС=АК=14см. При этом, сторона ВС является меньшим основанием трапеции.
artmasterstyle
03.06.2022
Углы при основании 72°. То есть биссектриса "отрезает" от треугольника равнобедренный треугольник, углы при основании которого равны 36°. Далее, внешний угол при вершине ЭТОГО (отрезанного) треугольника равен 2*36° = 72°, то есть второй треугольник тоже равнобедренный. То есть биссектриса угла при основании делит треугольник на два равнобедренных треугольника. Если обозначить длину биссектрисы L, основание a, боковую сторону b, и отрезок от вершины (противоположной основанию) до конца биссектрисы x, то получается x = L = a; (одна из сторон уже найдена, основание a = L = √20) По свойству биссектрисы b/a = x/(b - x); то есть b/a = a/(b - a); или (b/a - 1)*(b/a) = 1; (b/a)^2 - (b/a) - 1 = 0; b/a = (√5 + 1)/2; если подставить a = 2√5; получится b = 5 + √5;
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найти углы равнобедренного треугольника, если высота, проведённая к боковой стороне, образует с основанием угол 53° ?
∠А=53
∠Н=90 ⇒ ∠С=90-53=37
ΔАВС
∠А=∠С=37