Найдём все расстояния между точками:
АВ = sqrt((2 - (-1)) ^ 2 + (7 - 4) ^ 2) = sqrt(9 + 9) = 3sqrt2
BC = sqrt((1 - (-1)) ^ 2 + (4 - 2) ^ 2) = sqrt(4 + 4) = 2sqrt2
AC = sqrt((2 - 1) ^ 2 + (7 - 2) ^ 2) = sqrt(1 + 25) = sqrt26
Тип треугольника определяется по наибольшему углу, который, в свою очередь, лежит напротив наибольшей стороны треугольника. Чтобы сравнить стороны, можно возвести их длины в квадрат. На неравенство это не повлияет, так как каждая из сторон строго больше 0:
(АВ) ^ 2 = 18
(BC) ^ 2 = 8
(CD) ^ 2 = 26 - Наибольшая сторона.
Найдём наибольший угол треугольника по теореме косинусов:
26 = 18 + 8 - 2(3sqrt2)(2sqrt2)(cos(x)), где х - искомый угол. // - 26
2(3sqrt2)(2sqrt2)(cos(x)) = 0
12*2*cos(x) = 0
24cos(x) = 0 // : 24
cos(x) = 0
x = 90 или 180 градусов, но так как это угол в треугольнике, то он строго меньше 180 градусов (по теореме о сумме углов треугольника) ==> x = 90 градусов ==> треугольник ABC - прямоугольный, ч.т.д.
1)
1.AB =A1B1(дано)
2.угол B= углу B1
3.угол A =углу A1
следовательно треугол. ABC и треугол. A1B1C1 равны (УСУ)(УГОЛ,СТОРОНА,УГОЛ) 2-ой признак равенсва треугольника.
1.CD=C1D1 (дано)
2.BC = B1C1 (т.к мы доказали то что трегол. ABC и треугол. A1B1C1,а в равных треугол. все соответсв. элем. равны)
3.угол C = углу C1 (т.к мы доказали то что трегол. ABC и треугол. A1B1C1,а в равных треугол. все соответсв. элем. равны)
следовательно треугол. DBC и треугол. D1B1CQ равны (СУС)(СТОРОНА УГОЛ СТОРОНА) 1-ый признак равенства тркугольника.
2)
пусть х - это основание,тогда x+2 - это две боковые стороны(т.к треугол. р/б)
получаем уровнение
x+x+2+x+2=16
3x=16-2-2
3x=12
x=12:3=4 см -основание
4+2=6 см - это две боковые стороны.
Поделитесь своими знаниями, ответьте на вопрос:
Периметр параллелограмма равен 64 см, а его высоты – 7 см и 9 см. найти стороны параллелограмма.
Тогда стороны х см и (х-4)см:
х+(х-4)=32;
2х=36;
х=18см - одна сторона.
18-4=14см - другая сторона.