Из прямоугольного треугольника ABD
AD^2=AB^2+BD^2=9+16=25
AD=5
Площадь основания равна 2*площадь ABD=2*(3*4/2)=3*4=12
AD параллельно BC, следовательно параллельно B1C1, поэтому AD принадлежит плоскости AB1C1, и это прямая пересечения плоскости основания с плоскостью AB1C1
Пусть BE высота в треугольнике ABD
Тогда угол B1EB это угол между плоскостью основания и плоскостью AB1C1, так как BE перпендикулярно AD, B1E перпендикулярно AD по теореме о трёх перпендикулярах.
Треугольник B1EB -- прямоугольный треугольник с углом 45 градусов, а следовательно, равнобедренный прямоугольный треугольник, поэтому B1B=BE
Чтобы найти высоту BE выразим площадь треугольника ABD двумя
площадь ABD = AB*BD/2 = AD*BE/2, отсюда
BE=AB*BD/AD=3*4/5=12/5=2,4
Площадь полной поверхности равна
2*площадь основания+площадь боковой поверхности
площадь боковой поверхности = периметр основания умножить на высоту
периметр основания = AB+BC+CD+AD=3+5+3+5=16
тогда площадь боковой поверхности 16*2,4=38,4
площадь полной поверхности
2*12+38,4=24+38,4=62,4
В прямоугольном треугольнике АВС, ∠С=90°. Найти указанную сторону , если а) АВ-? , sinА=0,2 ,ВС=5; б) АВ-? , cosА=0,6 ,ВС=12 ;
в)ВС-? ,sinА=2√10/11, АС=15
Объяснение:
а)Синусом острого угла прямоугольного треугольника называется отношение противолежащего этому углу катета к гипотенузе :
sinА=СВ/АВ , 0,2=5/ АВ , АВ=50:2=25.
б) По основному тригонометрическому тождеству sin²A+cos²A =1 получаем : sin²A+0,6² =1 , sin²A=0,64 , sinA=0,8 , т.к 0° <∠А<90°.
sinА=СВ/АВ , 0,6=12/ АВ , АВ=120:6=20.
в) 1+сtg²А=1/sin²А ( формула),
sin²А=(2√10/11)²=40/121 , 1/sin²А= 121/40,
1+сtg²А=121/40 , сtg²А=81/40 , сtgА=9/(2√10).
Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему катету :
сtgА=АС/СВ , 9/(2√10)=15/ВС , ВС=10√10/3
Поделитесь своими знаниями, ответьте на вопрос: