Площадь для равностороннего треугольника рассчитывается по формуле S=(b^2*√3')/4, где b-сторона треу-ка Имеем высоту 3√3'. По т. Пифагора найдём b. b^2=(3√3)^2+a^2/4 (3b^2)/4=27 b^2=36 b=6, откуда S=36√3/4=9√3
makeeva-nataliya60
05.08.2020
1)Формула площади параллелограмма выглядит так: S=h*b,где b - основание параллелограмма, h - высота, проведенная к этому основанию. Пусть h=x, тогда b=2x. Составим уравнение: х*2х=8 см2; 2х^2=8; х^2=4; х=2=h. Теперь найдем основание: 2*2=4 см. 2) В параллелограмме противоложные стороны попарно равны. Значит, можно опять составить уравнение: 2*4+2х=20см, где 2*4 - две известные стороны,2х - две неизвестные стороны, а 20 см - периметр. Решаем: 8+2х=20; 2х=12; х=6. ответ: 1) 2 см; 2) 4 см; 3) 6 см.
v-shevlyakov7992
05.08.2020
P(DKC) = CD + CK + DK P(DKE) = DE + KE + DK как видно, и в том, и в другом периметре фигурирует сторона DK, а CK = KE = DK. Найдем сторону DK. Диагональ СЕ делит прямоугольник на два треугольника. Периметр треугольника CDE = периметру треугольника CEF = половине периметра прямоугольника CDEF = 28/2 = 14 cм. В свою очередь, периметр CDE равен также сумме периметров DKC и DKE минус 4DK, т.е 14 = 16 + 18 - 4DK 4DK = 16 + 18 - 14 DK = 5 см Диагонали, при пересечении друг с другом, делятся пополам и образуют равнобедренные треугольники, значит DK = CK = КЕ = КF = 5 см. Теперь находим стороны прямоугольника. DС = ЕF = 16 - 5 - 5 = 6 см DE = CF = 18 - 5 - 5 = 8 см Проверка: Р(CDEF) = (6 + 8) * 2 = 28 см
S=(b^2*√3')/4, где b-сторона треу-ка
Имеем высоту 3√3'. По т. Пифагора найдём b.
b^2=(3√3)^2+a^2/4
(3b^2)/4=27
b^2=36
b=6, откуда S=36√3/4=9√3