Я решила так. 1. Правильный пятиугольник, сторона = 1 см. Отношение диагонали правильного пятиугольника к стороне = золотому сечению (то есть числу (1+√5)÷2). Считаем: х÷1 = (1+√5)÷2 x = 1.6180339888 (см)
2.Правильный шестиугольник, сторона = 5 см. При проведении меньшей диагонали получаем треугольник, у которого тупой угол = 120°, острые углы = по 30° каждый.
Решение 1. Меньшая диагональ правильного шестиугольника в √3 раз больше его стороны (это - свойство правильного шестиугольника), то есть = 5×√3 = 8.6602540378 (см).
Решение 2. Основано на правиле о том, что катет, лежащий против угла в 30°, равен половине гипотенузы. Нарисуй, и сразу все увидишь! Если провести в правильном шестиугольнике и меньшую, и большую диагонали, то большая диагональ является гипотенузой прямоугольного треугольника, а меньшая диагональ является одним из катетов. Получается, что нам именно и известен этот самый катет, лежащий напротив угла в 30°, он = 5 см. Тогда гипотенуза - она же большая диагональ, = 10 см. Остаётся по Пифагору найти второй катет (он же меньшая диагональ), х² = 10²-5²; х = √75 = 8.6602540378 (см).
Любовь
29.12.2022
ΔАВС, точки касания окружности и стороны АВ - К, стороны ВС - Л, стороны АС - М. Периметр Р=АВ+ВС+АС Нам известна только одна его сторона - гипотенуза ВС. ВС=ВЛ+ЛС=8+12=20 см. По теореме о касательных к окружности из одной точки: отрезки касательных от этой точки до точки касания равны. Поэтому: ЛС=СМ=12см ВЛ=ВК=8см Обозначим длину АК=АМ=х. Получается: катет АВ=АК+ВК=х+8 катет АС=АМ+СМ=х+12 Применим теорему Пифагора: (х+12)²+(х+8)²=20² х²+24х+144+х²+16х+64=400 2х²+40х-192=0 х²+20х-96=0 D=400+384=784=28² х=(-20+28)/2=4см Катет АВ=4+8=12 см катет АС=4+12=16 см Периметр 12+16+20=48 см
Nikolaevich1534
29.12.2022
ΔАВС, точки касания окружности и стороны АВ - К, стороны ВС - Л, стороны АС - М. Периметр Р=АВ+ВС+АС Нам известна только одна его сторона - гипотенуза ВС. ВС=ВЛ+ЛС=8+12=20 см. По теореме о касательных к окружности из одной точки: отрезки касательных от этой точки до точки касания равны. Поэтому: ЛС=СМ=12см ВЛ=ВК=8см Обозначим длину АК=АМ=х. Получается: катет АВ=АК+ВК=х+8 катет АС=АМ+СМ=х+12 Применим теорему Пифагора: (х+12)²+(х+8)²=20² х²+24х+144+х²+16х+64=400 2х²+40х-192=0 х²+20х-96=0 D=400+384=784=28² х=(-20+28)/2=4см Катет АВ=4+8=12 см катет АС=4+12=16 см Периметр 12+16+20=48 см
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Много ! выразите наименьшую диагональ правильного n-угольника через его сторону аn: 1)an=1см, n=5; 2)an=5см, n=6 где an-сторона, n-количество сторон
1. Правильный пятиугольник, сторона = 1 см.
Отношение диагонали правильного пятиугольника к стороне = золотому сечению (то есть числу (1+√5)÷2).
Считаем: х÷1 = (1+√5)÷2
x = 1.6180339888 (см)
2.Правильный шестиугольник, сторона = 5 см.
При проведении меньшей диагонали получаем треугольник, у которого тупой угол = 120°, острые углы = по 30° каждый.
Решение 1. Меньшая диагональ правильного шестиугольника в √3 раз больше его стороны (это - свойство правильного шестиугольника), то есть = 5×√3 = 8.6602540378 (см).
Решение 2. Основано на правиле о том, что катет, лежащий против угла в 30°, равен половине гипотенузы. Нарисуй, и сразу все увидишь!
Если провести в правильном шестиугольнике и меньшую, и большую диагонали, то большая диагональ является гипотенузой прямоугольного треугольника, а меньшая диагональ является одним из катетов.
Получается, что нам именно и известен этот самый катет, лежащий напротив угла в 30°, он = 5 см. Тогда гипотенуза - она же большая диагональ, = 10 см. Остаётся по Пифагору найти второй катет (он же меньшая диагональ), х² = 10²-5²; х = √75 = 8.6602540378 (см).