cmenick29
?>

Площадь основания конуса 9п см 2, а площадь его боковой поверхности 15п, найдите радиус вписанной в конус сферы ! буду ! много !

Геометрия

Ответы

dimaaristov
S ( основания)=π·R²
 
9π = π·R²    ⇒  R²=9 
     
R = 3 cм - радиус основания конуса

 S( бок) = π·R·L
L- образующая конуса.

15π = π·3·L  ⇒  L=5 cм

Осевое сечение конуса - равнобедренный треугольник, с боковыми сторонами L=5 cм и основанием , равным диаметру основания конуса, 6 см
Высота этого треугольника по теореме Пифагора
Н²=5²-3²=25-9=16
Н=4
Сфера, вписана в конус.
Значит ее большая окружность вписана в треугольник, являющийся осевым сечением конуса.

По формуле

r= \frac{S}{p}= \frac{ \frac{6\cdot 4}{2} }{ \frac{5+5+6}{2} }= \frac{12}{8}= \frac{3}{2}=1,5
windless-el
Если ВА⊥АD, то ∠А=90(по опр.перпендикуляра), и ∠В=90, так как ВА⊥ВС, так как ВС∫∫АD(по св-ву парал. прямых) ⇒ АВСD - прямоугольная трапеция( по опр.).
Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6.
Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ)
Найдем основание трапеции: АМ+МD
6+6=12

Найдем площадь:
S=\frac{6+12}{2} * 6=54
ответ:54
Playintim405374

1) Диагонали параллелограмма равны. НЕВЕРНО

Диагонали равны только у разновидностей параллелограмма : у прямоугольника и квадрата.

2) Катет прямоугольного треугольника, лежащий против угла 30°, равен половине гипотенузы. ВЕРНО

3) В прямоугольной трапеции ровно один прямой угол. НЕВЕРНО

Боковая сторона, которая образует прямой угол с одним основанием трапеции, является перпендикуляром к двум параллельным основаниям, значит, она образует прямой угол со вторым основанием тоже. Всего в прямоугольной трапеции 2 прямых угла. Если в трапеции будет 4 прямых угла, то это будет прямоугольник.

4) Сумма углов четырёхугольника равна 360°. ВЕРНО

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Площадь основания конуса 9п см 2, а площадь его боковой поверхности 15п, найдите радиус вписанной в конус сферы ! буду ! много !
Ваше имя (никнейм)*
Email*
Комментарий*