Три равные окружности радиуса r попарно касаются одна другой. вычислить площадь фигуры, расположенной вне окружностей и ограниченной их дугами, заключенными между точками касания. решите, . подробно.
О1, О2, О3 - центры окружностей. Треугольник О1О2О3 - равносторонний, его сторона равна 2r. Тогда площадь этого треугольника равна (2r)^2*V3 / 4 = r^2*V3 Площадь одного сектора равна pi*r^2 / 6 Таких секторов образовано три. Значит, площадь трех секторов равна pi*r^2 / 2 Тогда площадь фигуры, расположенной вне окружностей и ограниченной их дугами, будет равна разности между площадью треугольника О1О2О3 и площадью трех секторов. А это равно r^2*V3 - pi*r^2 / 2 = 0,5*(2V3 - pi)*r^2
okovyrova1
27.10.2021
Стона тр-ка равна а=Р/3=24/3=8см. Радиус описанной окружности около правильного тр-ка рассчитывается по формуле: R=(a√3)/3=(8√3)/3см. Пусть сторона пятиугольника равна х. Правильный пятиугольник состоит из пяти равнобедренных тр-ков с основанием х, которые, в свою очередь делятся высотой, опущенной из центра на основание х, на два прямоугольных треугольника. Рассмотрим один такой тр-ник. У него гипотенуза R, один из катетов х/2, а угол, напротив этого катета - центральный, равен: ∠О=360/10=36° sin36=(х/2)/R, x=2Rsin36=(16sin36·√3)/3≈5.43см.
rimmaskis
27.10.2021
1. Рассмотрим осевое сечение конуса - треугольник АВС, он правильный. У правильного треугольника высота опущенная из точки В на сторону АС будет его медианой и биссектрисой. А если так то угол АВД=углу ДВС. Угол АВД = 30 градусов. 2. Рассмотрим треугольник ВБС. Угол Д равен 90 градусов, потому что ВД высота. Треугольник ВБС прямоугольный. За теоремой косинусов находим сторону треугольника АВС. cos углаДВС=ВД/ВС. ВС=ВД/cos углаДБС. 3. Площадь треугольника равна половине площади прямоугольника. S=(АС*ВД)/2
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Три равные окружности радиуса r попарно касаются одна другой. вычислить площадь фигуры, расположенной вне окружностей и ограниченной их дугами, заключенными между точками касания. решите, . подробно.
Треугольник О1О2О3 - равносторонний, его сторона равна 2r. Тогда площадь этого треугольника равна (2r)^2*V3 / 4 = r^2*V3
Площадь одного сектора равна pi*r^2 / 6
Таких секторов образовано три. Значит, площадь трех секторов равна pi*r^2 / 2
Тогда площадь фигуры, расположенной вне окружностей и ограниченной их дугами, будет равна разности между площадью треугольника О1О2О3 и площадью трех секторов. А это равно r^2*V3 - pi*r^2 / 2 = 0,5*(2V3 - pi)*r^2