Борисов
?>

< 1+< 2=180 < 3=50° найти < 4

Геометрия

Ответы

magnit-expo
<1+<2+<3+<4=270 из этого следует что 270-180-50=40 град
potemkin77
В ромбе проведём диагонали, они перпендикулярны. Пусть центр окружности О. Ромб обозначим ABCD. Рассмотрим треугольник ВСО. Проведём радиус в точку касания это ОМ. ОМ перпендикулярна ВС это высота треугольника ВСО. Одну часть обозначим Х. Тогда гипотенуза треугольника Х+3Х. Высота в прямоугольном треугольнике есть среднее пропорциональное между отрезками гипотенузы. ОМ^2=X*3X ОМ=Х корней из 3. Вычислим площадь ромба 3Х*ОМ*2+Х*ОМ*2=8Х*ОМ=24 корня из 3. Но ОМ это Х корней из 3 8Х в квадрате корней из 3= 24 корня из 3. Сократим на 8 корней из 3. Будет Х в квадрате =3 Х = корню из 3. Найдём ОМ=корень из 3 умножить на корень из 3, будет 3.Я уверен что так!)
Рузиев_Давиденко
Пусть РАВС - данная пирамида, Р-вершина, РО = √13 см - высота,
РА=РВ=РС=6 см

1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)

2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3  = √69 (см) - это длина стороны основы.

3. Находим периметр основы.
Р=3а
Р=3√69 см

4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)

5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)

ответ. 11,25 √23 см².

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

< 1+< 2=180 < 3=50° найти < 4
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Pona4ka93
demochkoo
Николаевич1033
romolga3580
olyavoznyak
tatianaavoronina66
kirillreznikov
Ахмедшина Трубников1249
Fruktova Gazaryan
beaevgen711
stusha78938
Герасименко
karinasy4ewa
neganovaarxi
manager-3