lazarevaavrora
?>

Вкубе abcda1b1c1d1 все рёбра равны 5. на его ребре bb1 отмечена точка k так, что kb=4. через точки k и c1 проведена плоскость α, параллельная прямой bd1. a1p: pb1=3: 1. p — точка пересечения плоскости α с ребром a1b1. найдите угол наклона плоскости α к плоскости грани bb1c1c. по методу координат нашел, что угол=arctg(sqrt(26)/4)=arccos(4/sqrt( но мне требуется именно графическое решение. , , сделать.

Геометрия

Ответы

Varezka86179
Решение во вложенном файле.
arturusinsk5
АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. 
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. 
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. 
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. 
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
Вравнобедренный треугольник abc с основанием ас вписана окружность, которая касается боковой стороны
Tuzov

ответ: два решения (одно для остроугольного треугольника, другое для тупоугольного...)

1) Р = 256 (см)

2) Р = 56V21 (см)

Объяснение: треугольник АВС, основание ВС=2а (чтобы не возиться с дробями); АВ=АС=b

P = 2a+2b = 2(a+b)

а=b*cos(B); по т.синусов: b=2R*sin(B)

S = 2a*h/2 = ah; h = b*sin(B)

S = P*r/2 = (a+b)*r

(a+b)*r = ab*sin(B)

b(1+cos(B))*r = b*b*sin(B)*cos(B)

(1+cos(B))*r = 2R*sin^2(B)*cos(B)

r/(2R) = (1-cos(B))*cos(B)

обозначим х=cos(B)

x^2 - x + (6/25) = 0

(5x)^2 - 5*(5x) + 6 = 0

по т.Виета корни (3) и (2)

5х=3 ---> х = 0.6

---> sin(B) = V(1-0.36) = 0.8 или

5х=2 ---> х = 0.4

---> sin(B) = V(1-0.16) = 0.2V21

b = 2*50*0.8 = 80 или

b = 2*50*0.2V21 = 20V21

a = 80*0.6 = 48 или

а = 20V21*0.4 = 8V21

P = 2*(80+48) = 128*2 = 256 или

Р = 2*(20+8)*V21 = 56V21

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Вкубе abcda1b1c1d1 все рёбра равны 5. на его ребре bb1 отмечена точка k так, что kb=4. через точки k и c1 проведена плоскость α, параллельная прямой bd1. a1p: pb1=3: 1. p — точка пересечения плоскости α с ребром a1b1. найдите угол наклона плоскости α к плоскости грани bb1c1c. по методу координат нашел, что угол=arctg(sqrt(26)/4)=arccos(4/sqrt( но мне требуется именно графическое решение. , , сделать.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

proh-dorohova5244
baranovaas
om805633748
Никита
Vrezh
Kalmikova1666
yakovlevasvetlanalvovna209
magazin-71
Шиморянов Мария1866
nikitavertiev98400
Александрович Андреевна
staskamolbio5152
delfinmos
Анатольевна
Novikova Aleksandrovna