объяснение:
точки а (-5; -4), в (-4; 3), с (-1; -1) являются вершинами треугольника авс.
докажите, что треугольник авс равнобедренный.
длина стороны |ав| = √((bx - ax)² + (by - ay)²) = √((-4 - (-5))² + (3 - (-4))²) = √50 = 5√2 ≈ 7.07;
длина стороны |вc| = √((-1 - (-4))² + (-1 - 3)²) = 5;
длина стороны |ca| = √((-5 - (-1))² + (-4 - (-1))²) = 5;
|вc| = |ca| это значит, что треугольник авс равнобедренный;
составьте уравнение окружности, имеющий центр в точке с и проходящий через точку в.
принадлежит ли окружности точка а?
центр в точке с (-1; -1); радиус 5; уравнение окружности; (x+1)²+(y+1)²=5²;
проверяем: принадлежит ли окружности точка а; подставляем её координаты в уравнение;
((-5)+1)²+((-4)+1)²=5²; 25 = 25; точка а принадлежит окружности;
найдите длину медианы, проведенной к основанию треугольника.
найдем точку f - середина стороны ab: fx = (-5 + (-4))/2 = -4.5; fy = (-4 + 3)/2 = -0.5;
f (-4.5; -0.5); с (-1; -1); длина медианы cf: |cf| = √((-3.5)²+0.5²) = √12.5 = 5/√2 ≈ 3.54;
составьте уравнение прямой, проходящей через точки а и с.
уравнение прямой ас: (x+1)/4 = (y+1)/3; y = 3x/4 - 3/4;
відповідь:
пояснення:
в параллелограмме противоположные углы равны, а сумма углов, прилегающих к одной стороне равна 180° ⇒ 180-35=145°,
таким образом, в параллелограмме два угла по 35° и два по 145°,
острый угол - это угол, градусная мера которого меньше 90°, а градусная мера тупого угла всегда больше 90°
так как по условию надо найти второй острый угол, то это угол будет равен 35°
еще проще решение: сумма углов, прилегающих к одной стороне параллелограмма =180° и если один из них острый, т.е меньше 90°, то следовательно второй - тупой. таким образом найти надо было именно угол противоположный (так ка по условию найти надо острый, а не тупой), а он равен первому
Поделитесь своими знаниями, ответьте на вопрос:
Вравнобедренном треугольнике кмр (км = мр) высота мн=15см, кр =10см. найдите площадь треугольника кмр и высоту, проведенную к боковой стороне.
площадь треугольника кмр=кр*мн * 1/2=10*15 *1/2=75 см в квадрате
проводим высоту не к стороне мр
нр=5см
угол енр=30градусов следует сторона ер=1/2нр(катет лежащий против угла в 30 градусов =половине гипотенузы)
ер= 2.5
не=по теореме пифагора решаем =5корней из 3 деленое на 2