Основанием прямой четырехугольной призмы является ромб с углом в 120 градусов, боковое ребро призмы равно 4, а её большая диагональ 8. найти сторону основания призмы. можно с рисунком.
Пусть дана призма АВСДА₁В₁С₁Д₁ 1) Найдем по т.Пифагора большую диагональ АС основания призмы. АС=√(АС₁²- CC₁²)=4√3 ⇒ половина АС=2√3 2) Угол АВС=120º, сумма углов параллелограмма при одной стороне равна 180º ⇒ угол ВАД=60º, угол АВД=углу АДВ=60º Диагонали ромба пересекаются под прямым углом. ⇒ АО в равностороннем треугольнике АВД - высота, ⇒ АВ=АО:sin 60=2√3):√3/2=4 ----- Можно АВ найти по т.косинусов. АС²=АВ²+ВС² -2АВ*ВС*cos120º cos 120º= -1/2 48=a²+a²+2a²/2 48=3a² a²=16 a=4
inainainainaina0073
08.09.2020
Нехай АВСD - ромб, АС=16, АВ=ВС=СD=AD=10 О - точка перетину діагоналей
Діагоналі ромба (як паралелограма) перетинаються і в точці перетину діляться пополам, тому АО=16:2=8 см
Діагоналі ромба перетинаються під прямим кутом. Тому трикутник АОВ прямокутний з прямим кутом О За теоремою Піфагора
Значить друга діагональ дорівнює BD=2BO=2*6=12 см
Площа ромба дорівнює половині добутку діагоналей. Площа ромба (як паралелограма) дорівнює добутку сторони на висоту проведену до цієї сторони.
звідки висота ромба дорівнює см відповідь: 9.6 см
anitanemtsewa
08.09.2020
Эта фигура получится - трапеция)) т.к. радиусы перпендикулярны ВМ (касательной) и, следовательно, они параллельны-они будут основаниями трапеции, отрезок касательной будет высотой трапеции (EF). радиусы окружностей можно найти через площадь треугольников, в которые окружности вписаны, площадь этих треугольников вычисляется или по формуле Герона (т.к. все стороны в них известны) или как половина произведения двух сторон на синус угла между ними (углы известны из равностороннего треугольника 60° ) высота трапеции находится из прямоугольных треугольников (с катетами-радиусами), гипотенузы которых будут биссектрисами углов (АО1; СО2; т.к. центр вписанной окружности=точка пересечения биссектрис углов треугольника) отрезки касательных к окружности, проведенных из одной точки, равны))
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Основанием прямой четырехугольной призмы является ромб с углом в 120 градусов, боковое ребро призмы равно 4, а её большая диагональ 8. найти сторону основания призмы. можно с рисунком.
1) Найдем по т.Пифагора большую диагональ АС основания призмы.
АС=√(АС₁²- CC₁²)=4√3 ⇒
половина АС=2√3
2) Угол АВС=120º, сумма углов параллелограмма при одной стороне равна 180º ⇒
угол ВАД=60º, угол АВД=углу АДВ=60º
Диагонали ромба пересекаются под прямым углом. ⇒ АО в равностороннем треугольнике АВД - высота, ⇒ АВ=АО:sin 60=2√3):√3/2=4
-----
Можно АВ найти по т.косинусов.
АС²=АВ²+ВС² -2АВ*ВС*cos120º
cos 120º= -1/2
48=a²+a²+2a²/2
48=3a²
a²=16
a=4