
В четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противолежащих сторон равны.
Трапеция - четырехугольник, и, поскольку в нее вписана окружность, сумма оснований равна сумме ее боковых сторон.
В равнобедренной трапеции высота делит большее основание на два отрезка, из которых больший равен полусумме оснований, а меньший - их полуразности.
Периметр трапеции АВСД равен р
Следовательно,
сумма боковых сторон равна р:2,
сумма оснований равна р:2.
Опустим высоту ВН.
Отрезок НД большего основания равен полусумме оснований и равен (р:2):2=р:4
Боковая сторона АВ равна половине полупериметра трапеции и равна
(р:2):2=р:4
Из прямоугольного треугольника АВН найдем высоту ВН:
ВН=АВ·sin (α)=(р:4)·sin (α)=(р·sin α):4
Площадь трапеции равна произведению высоты на полусумму оснований.
S АВСД=ВН·НД=(р:4)(р·sin (α):4)=(р²·sin α):16 ( единиц площади)
Площадь круга, вписанного в эту трапецию, находим по формуле
S=πr²
Высота трапеции - диаметр этого круга.
Соответственно, его радиус - половина высоты трапеции,
r= ВН:2=(р·sin α):8
а площадь
S= π·{р·sinα }²:64 ( единиц площади).
пусть боковая сторона будет х тогда основание будет х + 5.
По теореме Пифагора
h^2 = x^2 - ((x + 5 )/2)^2 h = 20 Умножим обе части уравнения на 4
4*20^2 = 4x^2 - x^2 - 10x - 25 = 0
3x^2 - 10x - 1625 = 0
D = b^2 - 4ac = 10^2 - 4*3*(-1625) = 100 + 19500 = 19600 > 0
x_1 = (-b + VD)/2a = (10 + V19600)/2*3 = (10 +140)/6 = 25
x_2 = (-b - VD)/2a = (10 - 140)/6 = -130/6 < 0 посторонний корень
25 + 5 = 30 основание треугольника.
ответ. 30
Поделитесь своими знаниями, ответьте на вопрос: