1) т.к. один из углов треугольника равен 45 градусов, и он прямоугольный, то второй угол тоже = 45 градусов. Получается, что у прямоугольного треугольника два одинаковых угла, значит он равнобедренный, и катеты равны. ответ: второй катет 8дм.
2)т.к. мы выяснили что треугольник равнобедренный, то каждый катет равен 28/2=14. ответ: по 14 дм.
3)
АВС - основной треугольник
АD-высота
ВС-гипотенуза.
Когда мы опустили высоту, то получился прямоугольный треугольник АВD
Один угол = 45 градусов, значит и второй тоже, получаем равнобедренный треугольник
АD=BD.
Т.к. сумма гипотенузы и высоты, опущенной к ней равна 21 см,то
х-высота AD, получаем уравнение:
х+2х=21
3х=21
х=7
гипотенуза ВС=2х=2*7=14
ответ: Гипотенуза равна 14, выоста равна 7
1) так...построим этот треугольник...опустим высоту АД на гипотенузу BC ...получается еще один прямоугольный треугольник АБД, отсюда найдем...проекцию большего катета на гипотенузу400 = 144 + х (квадрат), х = 16..теперь у нас высота которая дана нам..это 12 см по формуле H(квадрат) = ХУ, где х и у проекции катетов на гипотенузу..так как мы одну из них нашли (16 см) ...подставляем под формулу..найдем отсюда вторую проекцию 144 = 16*у, у = 9..
теперь у нас есть гипотенуза от треугольника АБС, отсюда по теореме пифагора найдем катет АС..625 = 400 + АС(квадрат) , АС = 15 см.
СОS C = прилежащий катет / на гипотенузу...отсюда..COS C = 15/25 = 3/5.
2) так как диагональ БД перпендикулярна стороне АД, образовался прямоугольный треугольник ..и так как КОСИНУС УГЛА А = прилежащий катет /на гипотенузу..то отсюда COS 41 = x/12 , х = 12 * cos 41...подставим в формулу для нахождения площади параллелограмма АБСД...= S = a * b * sin a, а и b стороны, синус угла А это угол между сторонами...отсюда получаем S = 12* 12* sin41 *cos 41 = 72 * sin 82
Поделитесь своими знаниями, ответьте на вопрос:
Втрапеции средняя линия равна 6 сантиметров а высота 5 сантиметра найти площадь
S = (a + b)/2 · h, где а и b - основания трапеции, h - высота.
h = 5 см
Средняя линия трапеции равна полусумме оснований:
m = (a + b)/2 = 6 см
Значит, S = m · h = 6 · 5 = 30 см²