nst-33764
?>

Впрямоугольном треугольнике abc известны катеты: ac=5 bc=12.найти радиус окружности, вписанной в треугольник. напишете подробное решение!

Геометрия

Ответы

katdavidova91
1) х²=25+144=169 ; х=13. Площадь треугольника: 1/2*5*12=30 . S=pr , где r - радиус вписанной окружности, а p - полупериметр. 30=15*x ; x=2 . ответ: 2
ekaizer
Найдем сначала гипотенузу AB:
AB²=5²+12²=169
AB=13
Теперь по свойству вписанной окружности в прямогульный треугольник:
r=(a+b-c)/2=(5+12-13)/2=2
Наталья Юрьевич1228
Дано:

конус

△АВС - прямоугольный

∠С = 90°

АС = ВС = 6 см

Найти:

V - ?

Решение:

АО и ОВ - радиусы R.

CO - высота h.

Так как АС = ВС => осевое сечение данного конуса - равнобедренный △АВС.

Найдём гипотенузу (диаметр) АВ с теореме Пифагора:

с² = а² + b²

c = √a² + b²

c = √(6² + 6²) = √(36 + 36) = √72 = 6√2 см

Итак, АВ = 6√2 см

нахождения СО.

Так как △АВС - равнобедренный => СО - высота, медиана, биссектриса

=> АО = ОВ = 6√2/2 = 3√2 см, так как СО - медиана.

Найдём СО по теореме Пифагора:

с² = а² + b²

a = √c² - b²

a = √(6² - (3√2)²) = √18= 3√2 см

нахождения СО.

Так как △АВС - равнобедренный => СО - высота, медиана, биссектриса.

Медиана, проведённая из прямого угла к гипотенузе, равна половине этой гипотенузы.

=> СО = 6√2/2 = 3√2 см

V = 1/3пR²h

V = (1/3 * (3√2)² * 3√2)п = 18√2п см^3

ответ: 18√2п см^3
ivnivas2008
Дано:

Правильная четырёхугольная пирамида FABCD.

AB=6 (см).

FG=10 (см).

Найти:

S_{(n. \: no_Bepx.)}=? (см²).

Решение:

\boxed{S_{(n. \: no_Bepx.)}=S_{(oc_Ho_B.)}+S_{(6o_K. \: no_Bepx.)}}

Значит сначала мы должны найти площадь основания пирамиды, а затем площадь боковой поверхности пирамиды.

В основании правильной четырёхугольной пирамиды лежит квадрат, поэтому S_{(_k_B.)}=a^2=6^2=36 (см²).

Площадь боковой поверхности правильной четырёхугольной пирамиды - полупроизведение периметра основания на апофему.

Значит нам нужно сначала найти апофему нашей пирамиды.

1 правило: Апофема делит сторону основания пополам.2 правило: Катет прямоугольного треугольника, который образован апофемой пирамиды, высотой и отрезком, их соединяющим, равен половине длины основания правильной четырехугольной пирамиды.

Объяснение 1 правила: из этого следует, что апофема FH делит сторону основания DC так, что DH=HC=\dfrac{6}{2}=3 (см).

Объяснение 2 правила: внутри нашей пирамиды образовался прямоугольный \triangle FGH, где FG - катет прямоугольного тр-ка (высота пирамиды); GH - катет прямоугольного тр-ка; FH - гипотенуза прямоугольного тр-ка (апофема пирамиды). По данному правилу можно сказать, что DH=HC=GH=3 (см).

Так как апофема FH нашей пирамиды является ещё и гипотенузы прямоугольного \triangle FGH, то мы сможем найти её величину по т.Пифагора:

FH=\sqrt{FG^2+GH^2}=\sqrt{10^2+3^2}=\sqrt{100+9}=\sqrt{109} (см).

Теперь найдём периметр основания (квадрата):

P=4a=6\cdot4=24 (см).

Затем найдём площадь боковой поверхности:

S_{(6ok. \: no_B.)} =P_{(oc_Ho_B.)}\cdot\dfrac{1}{2}\cdot FH=24\cdot\dfrac{1}{2}\cdot\sqrt{109}=12\sqrt{109} (см²).

Остаётся найти ответ на вопрос: "Чему равна площадь полной поверхности пирамиды?"

S_{(n. \: no_Bepx.)}=\boxed{36+12\sqrt{109}} (см²).

ответ: \boxed{S_{(n. \: no_Bepx.)}=36+12\sqrt{109}} (см²).
Найти полную поверхность правильной четырехугольной пирамиды, сторона основания которой 6 см, а высо

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Впрямоугольном треугольнике abc известны катеты: ac=5 bc=12.найти радиус окружности, вписанной в треугольник. напишете подробное решение!
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

mail5
zaretskaya37
navi35374
oksit
Tadevosyan
varvara82193
Olenkalebedeva4477
myudanova631
zhunina71807
lemoh
laktionova-natal
Тресков946
inainainainaina0073
vbnm100584
ЭдуардовнаКлючников1361