Пересечение двух сфер Линия пересечения двух сфер есть окружность .
Объяснение:
Пусть O1 и O2 – центры сфер и A – их точка пересечения. Проведем через точку A плоскость α, перпендикулярную прямой O1O2.
Обозначим через B точку пересечения плоскости α с прямой O1O2. По теореме сечение шара плоскостью плоскость α пересекает обе сферы по окружности K с центром B, проходящей через точку A. Таким образом, окружность K принадлежит пересечению сфер.
Докажем, что сферы не имеют других точек пересечения, кроме точек окружности K. Допустим, точка X пересечения сфер не лежит на окружности K. Проведем плоскость через точку X и прямую O1O2 . Об этом говорит сайт https://intellect.icu . Она пересечет сферы по окружностям с центрами O1 и O2. Эти окружности пересекаются в двух точках, принадлежащих окружности K, да еще в точке X. Но две окружности не могут иметь больше двух точек пересечения.
ответ:6,13
Объяснение:
Длина прямоугольника (а) на 5 больше ширины
Ширина прямоугольника (b)
площадь прям- 84
Так как обе стороны прямоугольника неизвестны, то выразим одну сторону (например, длину) через другую (ширину), т.е.:
a = b + 5 (см).
Известно, что площадь прямоугольника находится по формуле:
Sпр. = a * b.
Тогда, подставив известное значение площади заданного прямоугольника и определенные нами стороны, получим:
(b+5)*b=84
b^2 + 5b = 84;
b^2 + 5b – 84 = 0;
D = (5)^2 – 4 * 1 * (-84) = 25+336 = 361 ; sqrt(D) = 19;
b1 = (-5-19) / 2 = -12;
b2 = (-5+19) / 2 = 7.
Длина-7
ширина не может быть -12, значит будет 12
Поделитесь своими знаниями, ответьте на вопрос:
2. в трапеции авсd ad – большее основание. через вершину с проведена прямая, параллельная ав, до пересечения с ad в точке е, de=6 см, ае=9 см. найдите: 1) длину средней линии трапеции; 2) периметр трапеции, если периметр треугольника cdeравен 19 см.
1) так как точка е делит нижнее основание трапеции на отрезки 9 и 6 см, то это основание равно 15 см.
2) в параллелограмме авсе: вс=ае=9 см; пусть ав=се=х см.
3) в треугольнике есd cd=р-6-х=19-6-х=13-х.
4) периметр трапеции: р=х+9+(13-х)+15=х+9+13-х+15=9+13+15=37 см.