Объяснение:
EB=EF, значит треугольник EBF - равнобедренный.
и угол EBF равен углу EFB.
Углы ВАС и ВСА равны, т.к. треугольник АВС равнобедренный, значит можно записать, что угол АСВ равен (180°-∠АВС) / 2
Угол CFE и EFB смежные, и в сумме 180°
Значит ∠EFC = 180°-∠EFВ = 180°-∠EBF = 180°-∠АВС
Биссектриса делит угол EFC пополам, значит
∠KFC = 1/2 EFC = (180°-∠АВС) / 2 = ∠АСВ
Поскольку ∠АСВ=∠KCF=∠KFC, то треугольник СKF имеет равные углы при основании CF следовательно он равнобедренный.
А в равнобедренном треугольнике СКF KC=KF, что и требовалось доказать.
Объяснение:
EB=EF, значит треугольник EBF - равнобедренный.
и угол EBF равен углу EFB.
Углы ВАС и ВСА равны, т.к. треугольник АВС равнобедренный, значит можно записать, что угол АСВ равен (180°-∠АВС) / 2
Угол CFE и EFB смежные, и в сумме 180°
Значит ∠EFC = 180°-∠EFВ = 180°-∠EBF = 180°-∠АВС
Биссектриса делит угол EFC пополам, значит
∠KFC = 1/2 EFC = (180°-∠АВС) / 2 = ∠АСВ
Поскольку ∠АСВ=∠KCF=∠KFC, то треугольник СKF имеет равные углы при основании CF следовательно он равнобедренный.
А в равнобедренном треугольнике СКF KC=KF, что и требовалось доказать.
Поделитесь своими знаниями, ответьте на вопрос:
На стороне ac треугольника abc отметили точку o так, что ab=ao. известно, что внешний угол треугольника abc при вершине a равен 160 градусов и угол c = 40 градусов. докажите, что bo=co
уг АСВ+ уг АВС = 160*
отсюда находим уг АВС=160*-40*=120*
треуг АВО равнобедренный
уг АВО=уг АОВ = 80*, т.к. уг ВАО =180*-160*=20* ( они смежные)
уг ОВС=120*-80* = 40*, а уголОСВ по усл 40*
углы при осн треугОВС равны треуг ОВС - равнобедр
ВО= ОС